Last modified by Mengting Qiu on 2023/12/14 11:15

From version 97.1
edited by Saxer Lin
on 2023/08/05 14:59
Change comment: There is no comment for this version
To version 81.1
edited by Xiaoling
on 2023/06/14 16:23
Change comment: Uploaded new attachment "image-20230614162334-2.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,16 +44,19 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
56 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
59 +
57 57  == 1.3 Specification ==
58 58  
59 59  
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,28 +99,146 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -== 1.4 Applications ==
103 103  
89 +== 1.4 Suitable Container & Liquid ==
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
112 112  
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
98 +
99 +
113 113  (% style="display:none" %)
114 114  
115 -== 1.5 Sleep mode and working mode ==
102 +== 1.5 Install LDS12-LB ==
116 116  
117 117  
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
106 +
107 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 +
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
110 +
111 +
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
115 +
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 +)))
119 +
120 +[[image:image-20230613143052-5.png]]
121 +
122 +
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
124 +
125 +[[image:image-20230613143125-6.png]]
126 +
127 +
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
131 +
132 +(((
133 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
135 +
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
138 +)))
139 +
140 +(((
141 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
143 +
144 +
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
148 +
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
152 +
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
159 +
160 +(((
161 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
163 +
164 +
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
168 +
169 +
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
173 +
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
177 +
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
181 +
182 +(((
183 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
184 +)))
185 +
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
187 +
188 +
189 +(((
190 +(% style="color:red" %)**Note :**
191 +
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
194 +
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
198 +
199 +
200 +== 1.6 Applications ==
201 +
202 +
203 +* Smart liquid control solution
204 +
205 +* Smart liquefied gas solution
206 +
207 +
208 +== 1.7 Precautions ==
209 +
210 +
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
212 +
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
214 +
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
216 +
217 +(% style="display:none" %)
218 +
219 +== 1.8 Sleep mode and working mode ==
220 +
221 +
118 118  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 119  
120 120  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 121  
122 122  
123 -== 1.6 Button & LEDs ==
227 +== 1.9 Button & LEDs ==
124 124  
125 125  
126 126  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -127,7 +127,7 @@
127 127  
128 128  
129 129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 131  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 132  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 133  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -139,9 +139,10 @@
139 139  )))
140 140  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 141  
142 -== 1.7 BLE connection ==
143 143  
247 +== 1.10 BLE connection ==
144 144  
249 +
145 145  LDS12-LB support BLE remote configure.
146 146  
147 147  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -153,12 +153,12 @@
153 153  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 154  
155 155  
156 -== 1.8 Pin Definitions ==
261 +== 1.11 Pin Definitions ==
157 157  
263 +[[image:image-20230523174230-1.png]]
158 158  
159 -[[image:image-20230805144259-1.png||height="413" width="741"]]
160 160  
161 -== 1.9 Mechanical ==
266 +== 1.12 Mechanical ==
162 162  
163 163  
164 164  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -172,10 +172,12 @@
172 172  
173 173  (% style="color:blue" %)**Probe Mechanical:**
174 174  
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
175 175  
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 177  
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
178 178  
285 +
179 179  = 2. Configure LDS12-LB to connect to LoRaWAN network =
180 180  
181 181  == 2.1 How it works ==
... ... @@ -192,7 +192,7 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
196 196  
197 197  
198 198  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -236,103 +236,32 @@
236 236  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237 237  
238 238  
239 -== 2.3 ​Uplink Payload ==
346 +== 2.3  ​Uplink Payload ==
240 240  
241 -=== 2.3.1 Device Status, FPORT~=5 ===
242 242  
243 -
244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
245 -
246 -The Payload format is as below.
247 -
248 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
249 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
250 -**Size(bytes)**
251 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
252 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
253 -
254 -Example parse in TTNv3
255 -
256 -[[image:image-20230805103904-1.png||height="131" width="711"]]
257 -
258 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
259 -
260 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
261 -
262 -(% style="color:blue" %)**Frequency Band**:
263 -
264 -0x01: EU868
265 -
266 -0x02: US915
267 -
268 -0x03: IN865
269 -
270 -0x04: AU915
271 -
272 -0x05: KZ865
273 -
274 -0x06: RU864
275 -
276 -0x07: AS923
277 -
278 -0x08: AS923-1
279 -
280 -0x09: AS923-2
281 -
282 -0x0a: AS923-3
283 -
284 -0x0b: CN470
285 -
286 -0x0c: EU433
287 -
288 -0x0d: KR920
289 -
290 -0x0e: MA869
291 -
292 -(% style="color:blue" %)**Sub-Band**:
293 -
294 -AU915 and US915:value 0x00 ~~ 0x08
295 -
296 -CN470: value 0x0B ~~ 0x0C
297 -
298 -Other Bands: Always 0x00
299 -
300 -(% style="color:blue" %)**Battery Info**:
301 -
302 -Check the battery voltage.
303 -
304 -Ex1: 0x0B45 = 2885mV
305 -
306 -Ex2: 0x0B49 = 2889mV
307 -
308 -
309 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
310 -
311 -
312 312  (((
313 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
350 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
351 +)))
314 314  
315 -periodically send this uplink every 20 minutes, this interval [[can be changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]].
316 -
317 -Uplink Payload totals 11 bytes.
353 +(((
354 +Uplink payload includes in total 8 bytes.
318 318  )))
319 319  
320 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
321 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
322 322  **Size(bytes)**
323 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
324 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
325 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
326 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
327 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
328 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
329 -[[Message Type>>||anchor="HMessageType"]]
330 -)))
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
331 331  
332 -[[image:image-20230805104104-2.png||height="136" width="754"]]
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
333 333  
334 334  
335 -==== (% style="color:blue" %)**Battery Info**(%%) ====
371 +=== 2.3.1  Battery Info ===
336 336  
337 337  
338 338  Check the battery voltage for LDS12-LB.
... ... @@ -342,50 +342,29 @@
342 342  Ex2: 0x0B49 = 2889mV
343 343  
344 344  
345 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
381 +=== 2.3.2  Distance ===
346 346  
347 347  
348 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
384 +(((
385 +Get the distance. Flat object range 20mm - 2000mm.
386 +)))
349 349  
388 +(((
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
350 350  
351 -**Example**:
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
392 +)))
352 352  
353 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
354 354  
355 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
356 356  
357 357  
358 -==== (% style="color:blue" %)**Distance**(%%) ====
399 +=== 2.3.3  Interrupt Pin ===
359 359  
360 360  
361 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
362 -
363 -
364 -**Example**:
365 -
366 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
367 -
368 -
369 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
370 -
371 -
372 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
373 -
374 -
375 -**Example**:
376 -
377 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
378 -
379 -Customers can judge whether they need to adjust the environment based on the signal strength.
380 -
381 -
382 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
383 -
384 -
385 385  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
386 386  
387 -Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]].
388 -
389 389  **Example:**
390 390  
391 391  0x00: Normal uplink packet.
... ... @@ -393,116 +393,54 @@
393 393  0x01: Interrupt Uplink Packet.
394 394  
395 395  
396 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
411 +=== 2.3.4  DS18B20 Temperature sensor ===
397 397  
398 398  
399 -Characterize the internal temperature value of the sensor.
414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
400 400  
401 -**Example: **
402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
416 +**Example**:
404 404  
418 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
405 405  
406 -==== (% style="color:blue" %)**Message Type**(%%) ====
420 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
407 407  
408 408  
423 +=== 2.3.5  Sensor Flag ===
424 +
425 +
409 409  (((
410 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
411 411  )))
412 412  
413 413  (((
414 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
415 415  )))
416 416  
417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
421 421  
435 +=== 2.3.6  Decode payload in The Things Network ===
422 422  
423 -=== 2.3.3 Historical Water Flow Status, FPORT~=3 ===
424 424  
425 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.5DatalogFeature]].
438 +While using TTN network, you can add the payload format to decode the payload.
426 426  
427 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status.
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
428 428  
442 +The payload decoder function for TTN V3 is here:
429 429  
430 -* (((
431 -Each data entry is 11 bytes and has the same structure as [[real time water flow status>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.3.3A0WaterFlowValue2CUplinkFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
444 +(((
445 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
432 432  )))
433 433  
434 -For example, in the US915 band, the max payload for different DR is:
435 435  
436 -**a) DR0:** max is 11 bytes so one entry of data
449 +== 2.4  Uplink Interval ==
437 437  
438 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
439 439  
440 -**c) DR2:** total payload includes 11 entries of data
452 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
441 441  
442 -**d) DR3:** total payload includes 22 entries of data.
443 443  
444 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
455 +== 2.5  ​Show Data in DataCake IoT Server ==
445 445  
446 446  
447 -**Downlink:**
448 -
449 -0x31 64 CC 68 0C 64 CC 69 74 05
450 -
451 -[[image:image-20230805144936-2.png||height="113" width="746"]]
452 -
453 -**Uplink:**
454 -
455 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
456 -
457 -
458 -**Parsed Value:**
459 -
460 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
461 -
462 -
463 -[360,176,30,High,True,2023-08-04 02:53:00],
464 -
465 -[355,168,30,Low,False,2023-08-04 02:53:29],
466 -
467 -[245,211,30,Low,False,2023-08-04 02:54:29],
468 -
469 -[57,700,30,Low,False,2023-08-04 02:55:29],
470 -
471 -[361,164,30,Low,True,2023-08-04 02:56:00],
472 -
473 -[337,184,30,Low,False,2023-08-04 02:56:40],
474 -
475 -[20,4458,30,Low,False,2023-08-04 02:57:40],
476 -
477 -[362,173,30,Low,False,2023-08-04 02:58:53],
478 -
479 -
480 -History read from serial port:
481 -
482 -[[image:image-20230805145056-3.png]]
483 -
484 -
485 -=== 2.3.3 Decode payload in The Things Network ===
486 -
487 -
488 -While using TTN network, you can add the payload format to decode the payload.
489 -
490 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
491 -
492 -
493 493  (((
494 -The payload decoder function for TTN is here:
495 -)))
496 -
497 -(((
498 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
499 -)))
500 -
501 -
502 -== 2.4 ​Show Data in DataCake IoT Server ==
503 -
504 -
505 -(((
506 506  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
507 507  )))
508 508  
... ... @@ -534,13 +534,13 @@
534 534  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
535 535  
536 536  
537 -== 2.5 Datalog Feature ==
490 +== 2.6 Datalog Feature ==
538 538  
539 539  
540 540  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
541 541  
542 542  
543 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
496 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
544 544  
545 545  
546 546  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -557,7 +557,7 @@
557 557  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
558 558  
559 559  
560 -=== 2.5.2 Unix TimeStamp ===
513 +=== 2.6.2 Unix TimeStamp ===
561 561  
562 562  
563 563  LDS12-LB uses Unix TimeStamp format based on
... ... @@ -574,7 +574,7 @@
574 574  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
575 575  
576 576  
577 -=== 2.5.3 Set Device Time ===
530 +=== 2.6.3 Set Device Time ===
578 578  
579 579  
580 580  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -584,13 +584,13 @@
584 584  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
585 585  
586 586  
587 -=== 2.5.4 Poll sensor value ===
540 +=== 2.6.4 Poll sensor value ===
588 588  
589 589  
590 590  Users can poll sensor values based on timestamps. Below is the downlink command.
591 591  
592 592  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
593 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
594 594  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
595 595  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
596 596  
... ... @@ -611,7 +611,7 @@
611 611  )))
612 612  
613 613  
614 -== 2.6 Frequency Plans ==
567 +== 2.7 Frequency Plans ==
615 615  
616 616  
617 617  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -619,90 +619,6 @@
619 619  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
620 620  
621 621  
622 -== 2.7 LiDAR ToF Measurement ==
623 -
624 -=== 2.7.1 Principle of Distance Measurement ===
625 -
626 -
627 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
628 -
629 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
630 -
631 -
632 -=== 2.7.2 Distance Measurement Characteristics ===
633 -
634 -
635 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
636 -
637 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
638 -
639 -
640 -(((
641 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
642 -)))
643 -
644 -(((
645 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
646 -)))
647 -
648 -(((
649 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
650 -)))
651 -
652 -
653 -(((
654 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
655 -)))
656 -
657 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
658 -
659 -(((
660 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
661 -)))
662 -
663 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
664 -
665 -(((
666 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
667 -)))
668 -
669 -
670 -=== 2.7.3 Notice of usage ===
671 -
672 -
673 -Possible invalid /wrong reading for LiDAR ToF tech:
674 -
675 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
676 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
677 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
678 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
679 -
680 -=== 2.7.4  Reflectivity of different objects ===
681 -
682 -
683 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
684 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
685 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
686 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
687 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
688 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
689 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
690 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
691 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
692 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
693 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
694 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
695 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
696 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
697 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
698 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
699 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
700 -Unpolished white metal surface
701 -)))|(% style="width:93px" %)130%
702 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
703 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
704 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
705 -
706 706  = 3. Configure LDS12-LB =
707 707  
708 708  == 3.1 Configure Methods ==
... ... @@ -716,6 +716,7 @@
716 716  
717 717  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
718 718  
588 +
719 719  == 3.2 General Commands ==
720 720  
721 721  
... ... @@ -748,7 +748,7 @@
748 748  )))
749 749  
750 750  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
751 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
752 752  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
753 753  30000
754 754  OK
... ... @@ -791,7 +791,7 @@
791 791  (% style="color:blue" %)**AT Command: AT+INTMOD**
792 792  
793 793  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
794 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
795 795  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
796 796  0
797 797  OK
... ... @@ -815,35 +815,7 @@
815 815  
816 816  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
817 817  
818 -=== 3.3.3  Set Power Output Duration ===
819 819  
820 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
821 -
822 -~1. first enable the power output to external sensor,
823 -
824 -2. keep it on as per duration, read sensor value and construct uplink payload
825 -
826 -3. final, close the power output.
827 -
828 -(% style="color:blue" %)**AT Command: AT+3V3T**
829 -
830 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
831 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
832 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
833 -OK
834 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
835 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
836 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
837 -
838 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
839 -Format: Command Code (0x07) followed by 3 bytes.
840 -
841 -The first byte is 01,the second and third bytes are the time to turn on.
842 -
843 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
844 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
845 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
846 -
847 847  = 4. Battery & Power Consumption =
848 848  
849 849  
... ... @@ -864,7 +864,7 @@
864 864  
865 865  * Fix bugs.
866 866  
867 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
868 868  
869 869  Methods to Update Firmware:
870 870  
... ... @@ -872,6 +872,7 @@
872 872  
873 873  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
874 874  
717 +
875 875  = 6. FAQ =
876 876  
877 877  == 6.1 What is the frequency plan for LDS12-LB? ==
... ... @@ -892,11 +892,11 @@
892 892  
893 893  
894 894  (((
895 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
738 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
896 896  )))
897 897  
898 898  (((
899 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
742 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
900 900  )))
901 901  
902 902  
... ... @@ -905,7 +905,7 @@
905 905  )))
906 906  
907 907  (((
908 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
751 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
909 909  )))
910 910  
911 911  
... ... @@ -932,6 +932,7 @@
932 932  
933 933  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
934 934  
778 +
935 935  = 9. ​Packing Info =
936 936  
937 937  
... ... @@ -949,6 +949,7 @@
949 949  
950 950  * Weight / pcs : g
951 951  
796 +
952 952  = 10. Support =
953 953  
954 954  
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content