Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 9 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -35,7 +35,7 @@ 35 35 36 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]38 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,16 +44,19 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 47 +* Liquid Level Measurement by Ultrasonic technology 48 +* Measure through container, No need to contact Liquid 49 +* Valid level range 20mm - 2000mm 50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 51 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 56 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 59 + 57 57 == 1.3 Specification == 58 58 59 59 ... ... @@ -62,23 +62,6 @@ 62 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 63 * Operating Temperature: -40 ~~ 85°C 64 64 65 -(% style="color:#037691" %)**Probe Specification:** 66 - 67 -* Storage temperature:-20℃~~75℃ 68 -* Operating temperature : -20℃~~60℃ 69 -* Measure Distance: 70 -** 0.1m ~~ 12m @ 90% Reflectivity 71 -** 0.1m ~~ 4m @ 10% Reflectivity 72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution : 5mm 74 -* Ambient light immunity : 70klux 75 -* Enclosure rating : IP65 76 -* Light source : LED 77 -* Central wavelength : 850nm 78 -* FOV : 3.6° 79 -* Material of enclosure : ABS+PC 80 -* Wire length : 25cm 81 - 82 82 (% style="color:#037691" %)**LoRa Spec:** 83 83 84 84 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -99,293 +99,322 @@ 99 99 * Sleep Mode: 5uA @ 3.3v 100 100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 101 102 -== 1.4 Applications == 103 103 89 +== 1.4 Suitable Container & Liquid == 104 104 105 -* Horizontal distance measurement 106 -* Parking management system 107 -* Object proximity and presence detection 108 -* Intelligent trash can management system 109 -* Robot obstacle avoidance 110 -* Automatic control 111 -* Sewer 112 112 113 -(% style="display:none" %) 92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 93 +* Container shape is regular, and surface is smooth. 94 +* Container Thickness: 95 +** Pure metal material. 2~~8mm, best is 3~~5mm 96 +** Pure non metal material: <10 mm 97 +* Pure liquid without irregular deposition. 114 114 115 -== 1.5 Sleep mode and working mode == 116 116 100 +(% style="display:none" %) 117 117 118 - (%style="color:blue"%)**DeepSleep Mode: **(%%)Sensor doesn't have anyLoRaWANactivate. This mode is used for storage and shipping to save battery life.102 +== 1.5 Install DDS20-LB == 119 119 120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 121 121 105 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 122 122 123 -= =1.6Button&LEDs==107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 124 124 109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 125 125 126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 127 127 112 +((( 113 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 114 +))) 128 128 129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 116 +((( 117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 134 134 ))) 135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 139 -))) 140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 141 142 - ==1.7 BLE connection ==120 +[[image:image-20230613143052-5.png]] 143 143 144 144 145 - LDS12-LBsupportBLEremote configure.123 +No polish needed if the container is shine metal surface without paint or non-metal container. 146 146 147 - BLE can beused to configuretheparameter of sensor or see the console output from sensor. BLE will be only activate on below case:125 +[[image:image-20230613143125-6.png]] 148 148 149 -* Press button to send an uplink 150 -* Press button to active device. 151 -* Device Power on or reset. 152 152 153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 128 +((( 129 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 130 +))) 154 154 132 +((( 133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 134 +))) 155 155 156 -== 1.8 Pin Definitions == 136 +((( 137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 138 +))) 157 157 140 +((( 141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 142 +))) 158 158 159 -[[image:image-20230805144259-1.png||height="413" width="741"]] 160 160 161 -== 1.9 Mechanical == 145 +((( 146 +(% style="color:blue" %)**LED Status:** 147 +))) 162 162 149 +* ((( 150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 151 +))) 163 163 164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 153 +* ((( 154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 155 +))) 156 +* ((( 157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 158 +))) 165 165 160 +((( 161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 162 +))) 166 166 167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 168 168 165 +((( 166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 167 +))) 169 169 170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 171 171 170 +((( 171 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 172 +))) 172 172 173 -(% style="color:blue" %)**Probe Mechanical:** 174 +((( 175 +Prepare Eproxy AB glue. 176 +))) 174 174 178 +((( 179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 180 +))) 175 175 176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 182 +((( 183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 184 +))) 177 177 186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 178 178 179 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 180 180 181 -== 2.1 How it works == 189 +((( 190 +(% style="color:red" %)**Note :** 182 182 192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 193 +))) 183 183 184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 195 +((( 196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 197 +))) 185 185 186 -(% style="display:none" %) (%%) 187 187 188 -== 2.2Quick guidetoconnect to LoRaWANserver(OTAA)==200 +== 1.6 Applications == 189 189 190 190 191 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Belowis the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]asa LoRaWAN gatewayinthis example.203 +* Smart liquid control solution 192 192 193 - TheLPS8v2 isalready setto connectedto[[TTN network >>url:https://console.cloud.thethings.network/]], so what weneed to now is configure the TTN server.205 +* Smart liquefied gas solution 194 194 195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 196 196 208 +== 1.7 Precautions == 197 197 198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 199 199 200 - EachLDS12-LBisshippedwith a stickerwiththe default deviceEUIasbelow:211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 201 201 202 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 203 203 215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 204 204 205 - Youcan enter thiskeyinthe LoRaWAN Serverportal.Below is TTN screen shot:217 +(% style="display:none" %) 206 206 219 +== 1.8 Sleep mode and working mode == 207 207 208 -(% style="color:blue" %)**Register the device** 209 209 210 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]222 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 211 211 224 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 212 212 213 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 214 214 215 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]227 +== 1.9 Button & LEDs == 216 216 217 217 218 - (%style="color:blue"%)**AddAPPEUI intheplication**230 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 219 219 220 220 221 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 235 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 236 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 237 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 238 +))) 239 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 240 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 241 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 242 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 243 +))) 244 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 222 222 223 223 224 - (% style="color:blue"%)**Add APP KEY**247 +== 1.10 BLE connection == 225 225 226 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 227 227 250 +DDS20-LB support BLE remote configure. 228 228 229 - (%style="color:blue"%)**Step2:**(%%)Activate onLDS12-LB252 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 230 230 254 +* Press button to send an uplink 255 +* Press button to active device. 256 +* Device Power on or reset. 231 231 232 - Pressthebuttonfor5secondstoactivate theLDS12-LB.258 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 233 233 234 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 235 235 236 - Afterjoinsuccess,it will start toupload messages to TTN and you canseethe messages in the panel.261 +== 1.11 Pin Definitions == 237 237 263 +[[image:image-20230523174230-1.png]] 238 238 239 -== 2.3 Uplink Payload == 240 240 241 -== =2.3.1Device Status,FPORT~=5===266 +== 1.12 Mechanical == 242 242 243 243 244 -User scansethe downlinkcommand(**0x2601**) toaskLDS12-LBtosend device configure detail, includedevice configurestatus. LDS12-LB will uplinkapayload via FPort=5 to server.269 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 245 245 246 -The Payload format is as below. 247 247 248 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 249 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 250 -**Size(bytes)** 251 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 252 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 272 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 253 253 254 -Example parse in TTNv3 255 255 256 -[[image:i mage-20230805103904-1.png||height="131" width="711"]]275 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 257 257 258 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 259 259 260 -(% style="color:blue" %)** FirmwareVersion**(%%): 0x0100,Means: v1.0.0 version278 +(% style="color:blue" %)**Probe Mechanical:** 261 261 262 - (% style="color:blue"%)**Frequency Band**:280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 263 263 264 -0x01: EU868 265 265 266 - 0x02: US915283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 267 267 268 -0x03: IN865 269 269 270 -0 x04:AU915286 += 2. Configure DDS20-LB to connect to LoRaWAN network = 271 271 272 - 0x05:KZ865288 +== 2.1 How it works == 273 273 274 -0x06: RU864 275 275 276 -0 x07:AS923291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 277 277 278 - 0x08:AS923-1293 +(% style="display:none" %) (%%) 279 279 280 - 0x09:AS923-2295 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 281 281 282 -0x0a: AS923-3 283 283 284 - 0x0b:CN470298 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 285 285 286 - 0x0c:EU433300 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 287 287 288 -0 x0d:KR920302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 289 289 290 -0x0e: MA869 291 291 292 -(% style="color:blue" %)**S ub-Band**:305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 293 293 294 - AU915andUS915:value0x00~~0x08307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 295 295 296 - CN470: value0x0B~~0x0C309 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 297 297 298 -Other Bands: Always 0x00 299 299 300 - (%style="color:blue"%)**BatteryInfo**:312 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 301 301 302 -Check the battery voltage. 303 303 304 - Ex1:0x0B45=2885mV315 +(% style="color:blue" %)**Register the device** 305 305 306 - Ex2:0x0B49=2889mV317 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 307 307 308 308 309 -= ==2.3.2UplinkPayload,FPORT~=2===320 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 310 310 322 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 311 311 312 -((( 313 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 314 314 315 - periodically sendthisuplinkevery 20 minutes,this interval [[canbe changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]].325 +(% style="color:blue" %)**Add APP EUI in the application** 316 316 317 -Uplink Payload totals 11 bytes. 318 -))) 319 319 320 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 321 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 322 -**Size(bytes)** 323 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 324 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 325 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 326 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 327 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 328 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 329 -[[Message Type>>||anchor="HMessageType"]] 330 -))) 328 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 331 331 332 -[[image:image-20230805104104-2.png||height="136" width="754"]] 333 333 331 +(% style="color:blue" %)**Add APP KEY** 334 334 335 - ==== (% style="color:blue"%)**BatteryInfo**(%%)====333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 336 336 337 337 338 - ChecktheatteryvoltageforLDS12-LB.336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 339 339 340 -Ex1: 0x0B45 = 2885mV 341 341 342 - Ex2:0x0B49=2889mV339 +Press the button for 5 seconds to activate the DDS20-LB. 343 343 341 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 344 344 345 - ====(%style="color:blue"%)**DS18B20Temperature sensor**(%%)====343 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 346 346 347 347 348 - Thisis optional, user can connect external DS18B20 sensor to the +3.3v,1-wire and GNDpin.and this field will report temperature.346 +== 2.3 Uplink Payload == 349 349 350 350 351 -**Example**: 349 +((( 350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 351 +))) 352 352 353 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 353 +((( 354 +Uplink payload includes in total 8 bytes. 355 +))) 354 354 355 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 359 +**Size(bytes)** 360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 362 +[[Distance>>||anchor="H2.3.2A0Distance"]] 363 +(unit: mm) 364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 356 356 368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 357 357 358 -==== (% style="color:blue" %)**Distance**(%%) ==== 359 359 371 +=== 2.3.1 Battery Info === 360 360 361 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 362 362 374 +Check the battery voltage for DDS20-LB. 363 363 364 - **Example**:376 +Ex1: 0x0B45 = 2885mV 365 365 366 - If the data you get from the register is 0x0B0xEA, the distance between the sensor and the measured object is0BEA(H)=3050 (D)/10 = 305cm.378 +Ex2: 0x0B49 = 2889mV 367 367 368 368 369 -=== =(%style="color:blue" %)**Distancesignal strength**(%%)====381 +=== 2.3.2 Distance === 370 370 371 371 372 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 384 +((( 385 +Get the distance. Flat object range 20mm - 2000mm. 386 +))) 373 373 388 +((( 389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 374 374 375 -**Example**: 391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 392 +))) 376 376 377 -If payload is: 01D7(H)=471(D), distance signal strength=471,471>100,471≠65535,themeasuredvalue of Distis consideredcredible.394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 378 378 379 - Customerscanjudge whether theyneedtoadjustthe environmentbasedonthesignalstrength.396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 380 380 381 381 382 -=== =(%style="color:blue" %)**Interrupt Pin& Interrupt Level**(%%)====399 +=== 2.3.3 Interrupt Pin === 383 383 384 384 385 385 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 386 386 387 -Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 388 - 389 389 **Example:** 390 390 391 391 0x00: Normal uplink packet. ... ... @@ -393,116 +393,54 @@ 393 393 0x01: Interrupt Uplink Packet. 394 394 395 395 396 -=== =(%style="color:blue"%)**LiDAR temp**(%%)====411 +=== 2.3.4 DS18B20 Temperature sensor === 397 397 398 398 399 - Characterizetheinternaltemperature valueofthesensor.414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 400 400 401 -**Example: ** 402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 416 +**Example**: 404 404 418 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 405 405 406 - ====(% style="color:blue"%)**MessageType**(%%) ====420 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 407 407 408 408 423 +=== 2.3.5 Sensor Flag === 424 + 425 + 409 409 ((( 410 - Fora normal uplink payload, themessagetypeis always0x01.427 +0x01: Detect Ultrasonic Sensor 411 411 ))) 412 412 413 413 ((( 414 - ValidMessage Type:431 +0x00: No Ultrasonic Sensor 415 415 ))) 416 416 417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 421 421 435 +=== 2.3.6 Decode payload in The Things Network === 422 422 423 -=== 2.3.3 Historical Water Flow Status, FPORT~=3 === 424 424 425 - LDS12-LB storessensorvaluesand userscanretrievethesehistory values viathe [[downlinkcommand>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.5DatalogFeature]].438 +While using TTN network, you can add the payload format to decode the payload. 426 426 427 - Theistoricalpayloadcludesoneormultipliesentriesdeveryentry hasthesame payload as Real-Timewater flow status.440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 428 428 442 +The payload decoder function for TTN V3 is here: 429 429 430 - *(((431 - Eachdataentryis 11 bytesandhas thesame structureas[[realtime water flowstatus>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.3.3A0WaterFlowValue2CUplinkFPORT3D2]],tosave airtime andbattery, LDS12-LB will send max bytes according tothecurrent DR andFrequency bands.444 +((( 445 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 432 432 ))) 433 433 434 -For example, in the US915 band, the max payload for different DR is: 435 435 436 - **a)DR0:**maxis 11 bytes so oneentry of data449 +== 2.4 Uplink Interval == 437 437 438 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 439 439 440 - **c)DR2:** total payload includes11entriesofdata452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 441 441 442 -**d) DR3:** total payload includes 22 entries of data. 443 443 444 - IfLDS12-LBdoesn'thave any data in thepollingtime. It will uplink 11 bytesof 0455 +== 2.5 Show Data in DataCake IoT Server == 445 445 446 446 447 -**Downlink:** 448 - 449 -0x31 64 CC 68 0C 64 CC 69 74 05 450 - 451 -[[image:image-20230805144936-2.png||height="113" width="746"]] 452 - 453 -**Uplink:** 454 - 455 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 456 - 457 - 458 -**Parsed Value:** 459 - 460 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 461 - 462 - 463 -[360,176,30,High,True,2023-08-04 02:53:00], 464 - 465 -[355,168,30,Low,False,2023-08-04 02:53:29], 466 - 467 -[245,211,30,Low,False,2023-08-04 02:54:29], 468 - 469 -[57,700,30,Low,False,2023-08-04 02:55:29], 470 - 471 -[361,164,30,Low,True,2023-08-04 02:56:00], 472 - 473 -[337,184,30,Low,False,2023-08-04 02:56:40], 474 - 475 -[20,4458,30,Low,False,2023-08-04 02:57:40], 476 - 477 -[362,173,30,Low,False,2023-08-04 02:58:53], 478 - 479 - 480 -History read from serial port: 481 - 482 -[[image:image-20230805145056-3.png]] 483 - 484 - 485 -=== 2.3.3 Decode payload in The Things Network === 486 - 487 - 488 -While using TTN network, you can add the payload format to decode the payload. 489 - 490 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 491 - 492 - 493 493 ((( 494 -The payload decoder function for TTN is here: 495 -))) 496 - 497 -((( 498 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 499 -))) 500 - 501 - 502 -== 2.4 Show Data in DataCake IoT Server == 503 - 504 - 505 -((( 506 506 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 507 507 ))) 508 508 ... ... @@ -524,7 +524,7 @@ 524 524 525 525 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 526 526 527 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 528 528 529 529 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 530 530 ... ... @@ -534,22 +534,22 @@ 534 534 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 535 535 536 536 537 -== 2. 5Datalog Feature ==490 +== 2.6 Datalog Feature == 538 538 539 539 540 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 541 541 542 542 543 -=== 2. 5.1 Ways to get datalog via LoRaWAN ===496 +=== 2.6.1 Ways to get datalog via LoRaWAN === 544 544 545 545 546 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 547 547 548 548 * ((( 549 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 550 550 ))) 551 551 * ((( 552 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 553 553 ))) 554 554 555 555 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -557,10 +557,10 @@ 557 557 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 558 558 559 559 560 -=== 2. 5.2 Unix TimeStamp ===513 +=== 2.6.2 Unix TimeStamp === 561 561 562 562 563 - LDS12-LB uses Unix TimeStamp format based on516 +DDS20-LB uses Unix TimeStamp format based on 564 564 565 565 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 566 566 ... ... @@ -574,23 +574,23 @@ 574 574 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 575 575 576 576 577 -=== 2. 5.3 Set Device Time ===530 +=== 2.6.3 Set Device Time === 578 578 579 579 580 580 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 581 581 582 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 583 583 584 584 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 585 585 586 586 587 -=== 2. 5.4 Poll sensor value ===540 +=== 2.6.4 Poll sensor value === 588 588 589 589 590 590 Users can poll sensor values based on timestamps. Below is the downlink command. 591 591 592 592 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 593 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 594 594 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 595 595 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 596 596 ... ... @@ -607,108 +607,24 @@ 607 607 ))) 608 608 609 609 ((( 610 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 611 611 ))) 612 612 613 613 614 -== 2. 6Frequency Plans ==567 +== 2.7 Frequency Plans == 615 615 616 616 617 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 618 618 619 619 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 620 620 621 621 622 -= =2.7LiDAR ToF Measurement==575 += 3. Configure DDS20-LB = 623 623 624 -=== 2.7.1 Principle of Distance Measurement === 625 - 626 - 627 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 628 - 629 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 630 - 631 - 632 -=== 2.7.2 Distance Measurement Characteristics === 633 - 634 - 635 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 636 - 637 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 638 - 639 - 640 -((( 641 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 642 -))) 643 - 644 -((( 645 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 646 -))) 647 - 648 -((( 649 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 650 -))) 651 - 652 - 653 -((( 654 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 655 -))) 656 - 657 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 658 - 659 -((( 660 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 661 -))) 662 - 663 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 664 - 665 -((( 666 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 667 -))) 668 - 669 - 670 -=== 2.7.3 Notice of usage === 671 - 672 - 673 -Possible invalid /wrong reading for LiDAR ToF tech: 674 - 675 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 676 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 677 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 678 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 679 - 680 -=== 2.7.4 Reflectivity of different objects === 681 - 682 - 683 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 684 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 685 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 686 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 687 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 688 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 689 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 690 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 691 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 692 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 693 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 694 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 695 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 696 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 697 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 698 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 699 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 700 -Unpolished white metal surface 701 -)))|(% style="width:93px" %)130% 702 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 703 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 704 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 705 - 706 -= 3. Configure LDS12-LB = 707 - 708 708 == 3.1 Configure Methods == 709 709 710 710 711 - LDS12-LB supports below configure method:580 +DDS20-LB supports below configure method: 712 712 713 713 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 714 714 ... ... @@ -716,6 +716,7 @@ 716 716 717 717 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 718 718 588 + 719 719 == 3.2 General Commands == 720 720 721 721 ... ... @@ -730,10 +730,10 @@ 730 730 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 731 731 732 732 733 -== 3.3 Commands special design for LDS12-LB ==603 +== 3.3 Commands special design for DDS20-LB == 734 734 735 735 736 -These commands only valid for LDS12-LB, as below:606 +These commands only valid for DDS20-LB, as below: 737 737 738 738 739 739 === 3.3.1 Set Transmit Interval Time === ... ... @@ -748,7 +748,7 @@ 748 748 ))) 749 749 750 750 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 751 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 752 752 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 753 753 30000 754 754 OK ... ... @@ -791,7 +791,7 @@ 791 791 (% style="color:blue" %)**AT Command: AT+INTMOD** 792 792 793 793 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 794 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 795 795 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 796 796 0 797 797 OK ... ... @@ -815,39 +815,11 @@ 815 815 816 816 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 817 817 818 -=== 3.3.3 Set Power Output Duration === 819 819 820 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 821 - 822 -~1. first enable the power output to external sensor, 823 - 824 -2. keep it on as per duration, read sensor value and construct uplink payload 825 - 826 -3. final, close the power output. 827 - 828 -(% style="color:blue" %)**AT Command: AT+3V3T** 829 - 830 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 831 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 832 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 833 -OK 834 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 835 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 836 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 837 - 838 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 839 -Format: Command Code (0x07) followed by 3 bytes. 840 - 841 -The first byte is 01,the second and third bytes are the time to turn on. 842 - 843 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 844 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 845 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 846 - 847 847 = 4. Battery & Power Consumption = 848 848 849 849 850 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 851 851 852 852 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 853 853 ... ... @@ -856,7 +856,7 @@ 856 856 857 857 858 858 (% class="wikigeneratedid" %) 859 -User can change firmware LDS12-LB to:701 +User can change firmware DDS20-LB to: 860 860 861 861 * Change Frequency band/ region. 862 862 ... ... @@ -864,7 +864,7 @@ 864 864 865 865 * Fix bugs. 866 866 867 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 868 868 869 869 Methods to Update Firmware: 870 870 ... ... @@ -872,40 +872,42 @@ 872 872 873 873 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 874 874 717 + 875 875 = 6. FAQ = 876 876 877 -== 6.1 What is the frequency plan for LDS12-LB? ==720 +== 6.1 What is the frequency plan for DDS20-LB? == 878 878 879 879 880 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 881 881 882 882 883 -= 7.Trouble Shooting=726 +== 6.2 Can I use DDS20-LB in condensation environment? == 884 884 885 -== 7.1 AT Command input doesn't work == 886 886 729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 887 887 888 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 889 732 += 7. Trouble Shooting = 890 890 891 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==734 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 892 892 893 893 894 -((( 895 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 896 -))) 737 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 897 897 898 -((( 899 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 900 -))) 901 901 740 +== 7.2 AT Command input doesn't work == 902 902 903 -((( 904 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 905 -))) 906 906 743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 744 + 745 + 746 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 747 + 748 + 907 907 ((( 908 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 751 + 752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 909 909 ))) 910 910 911 911 ... ... @@ -912,7 +912,7 @@ 912 912 = 8. Order Info = 913 913 914 914 915 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 916 916 917 917 (% style="color:red" %)**XXX**(%%): **The default frequency band** 918 918 ... ... @@ -932,12 +932,13 @@ 932 932 933 933 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 934 934 779 + 935 935 = 9. Packing Info = 936 936 937 937 938 938 (% style="color:#037691" %)**Package Includes**: 939 939 940 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 941 941 942 942 (% style="color:#037691" %)**Dimension and weight**: 943 943 ... ... @@ -949,6 +949,7 @@ 949 949 950 950 * Weight / pcs : g 951 951 797 + 952 952 = 10. Support = 953 953 954 954
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content