Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 10 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LDS12-LB -- LoRaWANLiDAR ToF Distance Sensor User Manual1 +DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 4153353-1.png]]2 +[[image:image-20230613133716-2.png||height="717" width="717"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,24 +18,24 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 22 22 23 23 24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWANLiDAR ToF (Timeof Flight) DistanceSensor**(%%) for Internet of Things solution. Itis capable to measure thedistancetoanobject as closeas 10 centimeters(+/- 5cm up to6m)andasfar as 12 meters(+/-1% startingat6m)!. TheLiDAR probeuseslaserinductiontechnologyfordistancemeasurement.25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server. 25 25 26 -The LDS12-LBcan be applied toscenariossuch as horizontal distancemeasurement, parkingmanagementsystem,objectproximityandpresencedetection,intelligent trashcan management system,robotobstacle avoidance,automaticcontrol,sewer,etc.27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 27 27 28 - Itdetects the distancebetweenemeasured object andthe sensor,anduploadsthevalueviawireless toLoRaWAN IoT Server.29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 29 29 30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 31 32 - LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 - LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]39 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,16 +44,20 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 48 +* Liquid Level Measurement by Ultrasonic technology 49 +* Measure through container, No need to contact Liquid 50 +* Valid level range 20mm - 2000mm 51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 57 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 60 + 61 + 57 57 == 1.3 Specification == 58 58 59 59 ... ... @@ -62,23 +62,6 @@ 62 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 63 * Operating Temperature: -40 ~~ 85°C 64 64 65 -(% style="color:#037691" %)**Probe Specification:** 66 - 67 -* Storage temperature:-20℃~~75℃ 68 -* Operating temperature : -20℃~~60℃ 69 -* Measure Distance: 70 -** 0.1m ~~ 12m @ 90% Reflectivity 71 -** 0.1m ~~ 4m @ 10% Reflectivity 72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution : 5mm 74 -* Ambient light immunity : 70klux 75 -* Enclosure rating : IP65 76 -* Light source : LED 77 -* Central wavelength : 850nm 78 -* FOV : 3.6° 79 -* Material of enclosure : ABS+PC 80 -* Wire length : 25cm 81 - 82 82 (% style="color:#037691" %)**LoRa Spec:** 83 83 84 84 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -99,28 +99,140 @@ 99 99 * Sleep Mode: 5uA @ 3.3v 100 100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 101 102 -== 1.4 Applications==90 +== 1.4 Suitable Container & Liquid == 103 103 104 104 105 -* Horizontal distance measurement 106 -* Parking management system 107 -* Object proximity and presence detection 108 -* Intelligent trash can management system 109 -* Robot obstacle avoidance 110 -* Automatic control 111 -* Sewer 93 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 94 +* Container shape is regular, and surface is smooth. 95 +* Container Thickness: 96 +** Pure metal material. 2~~8mm, best is 3~~5mm 97 +** Pure non metal material: <10 mm 98 +* Pure liquid without irregular deposition. 112 112 100 + 113 113 (% style="display:none" %) 114 114 115 -== 1.5 S leepmode and working mode==103 +== 1.5 Install DDS20-LB == 116 116 117 117 106 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 107 + 108 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 109 + 110 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 111 + 112 + 113 +((( 114 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 115 +))) 116 + 117 +((( 118 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 119 +))) 120 + 121 +[[image:image-20230613143052-5.png]] 122 + 123 + 124 +No polish needed if the container is shine metal surface without paint or non-metal container. 125 + 126 +[[image:image-20230613143125-6.png]] 127 + 128 + 129 +((( 130 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 131 +))) 132 + 133 +((( 134 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 135 +))) 136 + 137 +((( 138 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 139 +))) 140 + 141 +((( 142 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 143 +))) 144 + 145 + 146 +((( 147 +(% style="color:red" %)**LED Status:** 148 +))) 149 + 150 +* ((( 151 +Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 152 +))) 153 + 154 +* ((( 155 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 156 +))) 157 +* ((( 158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 159 +))) 160 + 161 +((( 162 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 163 +))) 164 + 165 + 166 +((( 167 +(% style="color:red" %)**Note :(%%) (% style="color:blue" %)Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 168 +))) 169 + 170 + 171 +((( 172 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 173 +))) 174 + 175 +((( 176 +Prepare Eproxy AB glue. 177 +))) 178 + 179 +((( 180 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 181 +))) 182 + 183 +((( 184 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 185 +))) 186 + 187 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 188 + 189 + 190 +((( 191 +(% style="color:red" %)**Note 1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 192 +))) 193 + 194 +((( 195 +(% style="color:red" %)**Note 2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 196 +))) 197 + 198 + 199 +== 1.6 Applications == 200 + 201 + 202 +* Smart liquid control solution. 203 + 204 +* Smart liquefied gas solution. 205 + 206 +== 1.7 Precautions == 207 + 208 + 209 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 210 + 211 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 212 + 213 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %) 214 + 215 +== 1.8 Sleep mode and working mode == 216 + 217 + 118 118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 119 119 120 120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 121 121 122 122 123 -== 1. 6Button & LEDs ==223 +== 1.9 Button & LEDs == 124 124 125 125 126 126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -127,7 +127,7 @@ 127 127 128 128 129 129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**230 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 131 131 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 132 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 133 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -139,10 +139,10 @@ 139 139 ))) 140 140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 141 142 -== 1. 7BLE connection ==242 +== 1.10 BLE connection == 143 143 144 144 145 - LDS12-LB support BLE remote configure.245 +DDS20-LB support BLE remote configure. 146 146 147 147 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 148 148 ... ... @@ -153,12 +153,12 @@ 153 153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 154 154 155 155 156 -== 1. 8Pin Definitions ==256 +== 1.11 Pin Definitions == 157 157 258 +[[image:image-20230523174230-1.png]] 158 158 159 -[[image:image-20230805144259-1.png||height="413" width="741"]] 160 160 161 -== 1. 9Mechanical ==261 +== 1.12 Mechanical == 162 162 163 163 164 164 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -172,16 +172,18 @@ 172 172 173 173 (% style="color:blue" %)**Probe Mechanical:** 174 174 275 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 175 175 176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 177 177 278 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 178 178 179 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 180 180 281 += 2. Configure DDS20-LB to connect to LoRaWAN network = 282 + 181 181 == 2.1 How it works == 182 182 183 183 184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate theLDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.286 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 185 185 186 186 (% style="display:none" %) (%%) 187 187 ... ... @@ -192,12 +192,12 @@ 192 192 193 193 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 194 194 195 -[[image:image-2023061 5153004-2.png||height="459" width="800"]](% style="display:none" %)297 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 196 196 197 197 198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.300 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 199 199 200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:302 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 201 201 202 202 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 203 203 ... ... @@ -226,10 +226,10 @@ 226 226 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 227 227 228 228 229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB331 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 230 230 231 231 232 -Press the button for 5 seconds to activate the LDS12-LB.334 +Press the button for 5 seconds to activate the DDS20-LB. 233 233 234 234 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 235 235 ... ... @@ -236,118 +236,75 @@ 236 236 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 237 237 238 238 239 -== 2.3 Uplink Payload == 341 +== 2.3 Uplink Payload == 240 240 241 -=== 2.3.1 Device Status, FPORT~=5 === 242 242 344 +((( 345 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 346 +))) 243 243 244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 348 +((( 349 +Uplink payload includes in total 8 bytes. 350 +))) 245 245 246 -The Payload format is as below. 247 - 248 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 249 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 352 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 353 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 250 250 **Size(bytes)** 251 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 252 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 355 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 356 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 357 +[[Distance>>||anchor="H2.3.2A0Distance"]] 358 +(unit: mm) 359 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 360 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 361 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 253 253 254 - ExampleparseTTNv3363 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 255 255 256 -[[image:image-20230805103904-1.png||height="131" width="711"]] 257 257 258 - (%style="color:blue"%)**SensorModel**(%%): For LDS12-LB, this value is 0x24366 +=== 2.3.1 Battery Info === 259 259 260 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 261 261 262 - (%style="color:blue"%)**FrequencyBand**:369 +Check the battery voltage for DDS20-LB. 263 263 264 -0x01: EU868 265 - 266 -0x02: US915 267 - 268 -0x03: IN865 269 - 270 -0x04: AU915 271 - 272 -0x05: KZ865 273 - 274 -0x06: RU864 275 - 276 -0x07: AS923 277 - 278 -0x08: AS923-1 279 - 280 -0x09: AS923-2 281 - 282 -0x0a: AS923-3 283 - 284 -0x0b: CN470 285 - 286 -0x0c: EU433 287 - 288 -0x0d: KR920 289 - 290 -0x0e: MA869 291 - 292 -(% style="color:blue" %)**Sub-Band**: 293 - 294 -AU915 and US915:value 0x00 ~~ 0x08 295 - 296 -CN470: value 0x0B ~~ 0x0C 297 - 298 -Other Bands: Always 0x00 299 - 300 -(% style="color:blue" %)**Battery Info**: 301 - 302 -Check the battery voltage. 303 - 304 304 Ex1: 0x0B45 = 2885mV 305 305 306 306 Ex2: 0x0B49 = 2889mV 307 307 308 308 309 -=== 2.3.2 UplinkPayload, FPORT~=2===376 +=== 2.3.2 Distance === 310 310 311 311 312 312 ((( 313 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 380 +Get the distance. Flat object range 20mm - 2000mm. 381 +))) 314 314 315 -periodically send this uplink every 20 minutes, this interval [[can be changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]]. 383 +((( 384 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 316 316 317 - UplinkPayload totals11bytes.386 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 318 318 ))) 319 319 320 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 321 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 322 -**Size(bytes)** 323 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 324 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 325 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 326 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 327 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 328 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 329 -[[Message Type>>||anchor="HMessageType"]] 330 -))) 389 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 331 331 332 - [[image:image-20230805104104-2.png||height="136"width="754"]]391 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 333 333 393 +=== 2.3.3 Interrupt Pin === 334 334 335 -==== (% style="color:blue" %)**Battery Info**(%%) ==== 336 336 396 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 337 337 338 - Check the battery voltagefor LDS12-LB.398 +**Example:** 339 339 340 - Ex1:0x0B45= 2885mV400 +0x00: Normal uplink packet. 341 341 342 - Ex2:0x0B49=2889mV402 +0x01: Interrupt Uplink Packet. 343 343 344 344 345 -=== =(%style="color:blue" %)**DS18B20 Temperature sensor**(%%)====405 +=== 2.3.4 DS18B20 Temperature sensor === 346 346 347 347 348 348 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 349 349 350 - 351 351 **Example**: 352 352 353 353 If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -355,154 +355,42 @@ 355 355 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 356 356 357 357 358 -=== =(%style="color:blue"%)**Distance**(%%)====417 +=== 2.3.5 Sensor Flag === 359 359 360 360 361 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 362 - 363 - 364 -**Example**: 365 - 366 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 367 - 368 - 369 -==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 370 - 371 - 372 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 373 - 374 - 375 -**Example**: 376 - 377 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 378 - 379 -Customers can judge whether they need to adjust the environment based on the signal strength. 380 - 381 - 382 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 383 - 384 - 385 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 386 - 387 -Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 388 - 389 -**Example:** 390 - 391 -0x00: Normal uplink packet. 392 - 393 -0x01: Interrupt Uplink Packet. 394 - 395 - 396 -==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 397 - 398 - 399 -Characterize the internal temperature value of the sensor. 400 - 401 -**Example: ** 402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 404 - 405 - 406 -==== (% style="color:blue" %)**Message Type**(%%) ==== 407 - 408 - 409 409 ((( 410 - Fora normal uplink payload, themessagetypeis always0x01.421 +0x01: Detect Ultrasonic Sensor 411 411 ))) 412 412 413 413 ((( 414 - ValidMessage Type:425 +0x00: No Ultrasonic Sensor 415 415 ))) 416 416 417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 421 421 429 +=== 2.3.6 Decode payload in The Things Network === 422 422 423 -=== 2.3.3 Historical Water Flow Status, FPORT~=3 === 424 424 425 - LDS12-LB storessensorvaluesand userscanretrievethesehistory values viathe [[downlinkcommand>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.5DatalogFeature]].432 +While using TTN network, you can add the payload format to decode the payload. 426 426 427 - Theistoricalpayloadcludesoneormultipliesentriesdeveryentry hasthesame payload as Real-Timewater flow status.434 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 428 428 436 +The payload decoder function for TTN V3 is here: 429 429 430 - *(((431 - Eachdataentryis 11 bytesandhas thesame structureas[[realtime water flowstatus>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.3.3A0WaterFlowValue2CUplinkFPORT3D2]],tosave airtime andbattery, LDS12-LB will send max bytes according tothecurrent DR andFrequency bands.438 +((( 439 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 432 432 ))) 433 433 434 -For example, in the US915 band, the max payload for different DR is: 435 435 436 - **a)DR0:**maxis 11 bytes so oneentry of data443 +== 2.4 Uplink Interval == 437 437 438 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 439 439 440 - **c)DR2:** total payload includes11entriesofdata446 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 441 441 442 -**d) DR3:** total payload includes 22 entries of data. 443 443 444 - IfLDS12-LBdoesn'thave any data in thepollingtime. It will uplink 11 bytesof 0449 +== 2.5 Show Data in DataCake IoT Server == 445 445 446 446 447 -**Downlink:** 448 - 449 -0x31 64 CC 68 0C 64 CC 69 74 05 450 - 451 -[[image:image-20230805144936-2.png||height="113" width="746"]] 452 - 453 -**Uplink:** 454 - 455 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 456 - 457 - 458 -**Parsed Value:** 459 - 460 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 461 - 462 - 463 -[360,176,30,High,True,2023-08-04 02:53:00], 464 - 465 -[355,168,30,Low,False,2023-08-04 02:53:29], 466 - 467 -[245,211,30,Low,False,2023-08-04 02:54:29], 468 - 469 -[57,700,30,Low,False,2023-08-04 02:55:29], 470 - 471 -[361,164,30,Low,True,2023-08-04 02:56:00], 472 - 473 -[337,184,30,Low,False,2023-08-04 02:56:40], 474 - 475 -[20,4458,30,Low,False,2023-08-04 02:57:40], 476 - 477 -[362,173,30,Low,False,2023-08-04 02:58:53], 478 - 479 - 480 -History read from serial port: 481 - 482 -[[image:image-20230805145056-3.png]] 483 - 484 - 485 -=== 2.3.3 Decode payload in The Things Network === 486 - 487 - 488 -While using TTN network, you can add the payload format to decode the payload. 489 - 490 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 491 - 492 - 493 493 ((( 494 -The payload decoder function for TTN is here: 495 -))) 496 - 497 -((( 498 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 499 -))) 500 - 501 - 502 -== 2.4 Show Data in DataCake IoT Server == 503 - 504 - 505 -((( 506 506 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 507 507 ))) 508 508 ... ... @@ -524,7 +524,7 @@ 524 524 525 525 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 526 526 527 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**474 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 528 528 529 529 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 530 530 ... ... @@ -534,22 +534,23 @@ 534 534 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 535 535 536 536 537 -== 2.5 Datalog Feature == 538 538 485 +== 2.6 Datalog Feature == 539 539 540 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 541 541 488 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 542 542 543 -=== 2.5.1 Ways to get datalog via LoRaWAN === 544 544 491 +=== 2.6.1 Ways to get datalog via LoRaWAN === 545 545 546 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 547 547 494 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 495 + 548 548 * ((( 549 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.497 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 550 550 ))) 551 551 * ((( 552 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.500 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 553 553 ))) 554 554 555 555 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -557,10 +557,10 @@ 557 557 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 558 558 559 559 560 -=== 2. 5.2 Unix TimeStamp ===508 +=== 2.6.2 Unix TimeStamp === 561 561 562 562 563 - LDS12-LB uses Unix TimeStamp format based on511 +DDS20-LB uses Unix TimeStamp format based on 564 564 565 565 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 566 566 ... ... @@ -574,23 +574,23 @@ 574 574 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 575 575 576 576 577 -=== 2. 5.3 Set Device Time ===525 +=== 2.6.3 Set Device Time === 578 578 579 579 580 580 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 581 581 582 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).530 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 583 583 584 584 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 585 585 586 586 587 -=== 2. 5.4 Poll sensor value ===535 +=== 2.6.4 Poll sensor value === 588 588 589 589 590 590 Users can poll sensor values based on timestamps. Below is the downlink command. 591 591 592 592 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 593 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**541 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 594 594 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 595 595 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 596 596 ... ... @@ -607,108 +607,24 @@ 607 607 ))) 608 608 609 609 ((( 610 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.558 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 611 611 ))) 612 612 613 613 614 -== 2. 6Frequency Plans ==562 +== 2.7 Frequency Plans == 615 615 616 616 617 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.565 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 618 618 619 619 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 620 620 621 621 622 -= =2.7LiDAR ToF Measurement==570 += 3. Configure DDS20-LB = 623 623 624 -=== 2.7.1 Principle of Distance Measurement === 625 - 626 - 627 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 628 - 629 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 630 - 631 - 632 -=== 2.7.2 Distance Measurement Characteristics === 633 - 634 - 635 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 636 - 637 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 638 - 639 - 640 -((( 641 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 642 -))) 643 - 644 -((( 645 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 646 -))) 647 - 648 -((( 649 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 650 -))) 651 - 652 - 653 -((( 654 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 655 -))) 656 - 657 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 658 - 659 -((( 660 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 661 -))) 662 - 663 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 664 - 665 -((( 666 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 667 -))) 668 - 669 - 670 -=== 2.7.3 Notice of usage === 671 - 672 - 673 -Possible invalid /wrong reading for LiDAR ToF tech: 674 - 675 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 676 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 677 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 678 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 679 - 680 -=== 2.7.4 Reflectivity of different objects === 681 - 682 - 683 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 684 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 685 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 686 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 687 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 688 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 689 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 690 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 691 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 692 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 693 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 694 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 695 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 696 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 697 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 698 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 699 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 700 -Unpolished white metal surface 701 -)))|(% style="width:93px" %)130% 702 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 703 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 704 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 705 - 706 -= 3. Configure LDS12-LB = 707 - 708 708 == 3.1 Configure Methods == 709 709 710 710 711 - LDS12-LB supports below configure method:575 +DDS20-LB supports below configure method: 712 712 713 713 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 714 714 ... ... @@ -730,10 +730,10 @@ 730 730 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 731 731 732 732 733 -== 3.3 Commands special design for LDS12-LB ==597 +== 3.3 Commands special design for DDS20-LB == 734 734 735 735 736 -These commands only valid for LDS12-LB, as below:600 +These commands only valid for DDS20-LB, as below: 737 737 738 738 739 739 === 3.3.1 Set Transmit Interval Time === ... ... @@ -748,7 +748,7 @@ 748 748 ))) 749 749 750 750 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 751 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**615 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 752 752 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 753 753 30000 754 754 OK ... ... @@ -776,9 +776,6 @@ 776 776 ))) 777 777 * ((( 778 778 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 779 - 780 - 781 - 782 782 ))) 783 783 784 784 === 3.3.2 Set Interrupt Mode === ... ... @@ -791,7 +791,7 @@ 791 791 (% style="color:blue" %)**AT Command: AT+INTMOD** 792 792 793 793 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 794 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**655 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 795 795 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 796 796 0 797 797 OK ... ... @@ -815,39 +815,10 @@ 815 815 816 816 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 817 817 818 -=== 3.3.3 Set Power Output Duration === 819 - 820 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 821 - 822 -~1. first enable the power output to external sensor, 823 - 824 -2. keep it on as per duration, read sensor value and construct uplink payload 825 - 826 -3. final, close the power output. 827 - 828 -(% style="color:blue" %)**AT Command: AT+3V3T** 829 - 830 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 831 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 832 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 833 -OK 834 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 835 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 836 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 837 - 838 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 839 -Format: Command Code (0x07) followed by 3 bytes. 840 - 841 -The first byte is 01,the second and third bytes are the time to turn on. 842 - 843 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 844 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 845 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 846 - 847 847 = 4. Battery & Power Consumption = 848 848 849 849 850 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.682 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 851 851 852 852 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 853 853 ... ... @@ -856,7 +856,7 @@ 856 856 857 857 858 858 (% class="wikigeneratedid" %) 859 -User can change firmware LDS12-LB to:691 +User can change firmware DDS20-LB to: 860 860 861 861 * Change Frequency band/ region. 862 862 ... ... @@ -864,7 +864,7 @@ 864 864 865 865 * Fix bugs. 866 866 867 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**699 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 868 868 869 869 Methods to Update Firmware: 870 870 ... ... @@ -872,40 +872,42 @@ 872 872 873 873 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 874 874 707 + 875 875 = 6. FAQ = 876 876 877 -== 6.1 What is the frequency plan for LDS12-LB? ==710 +== 6.1 What is the frequency plan for DDS20-LB? == 878 878 879 879 880 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]713 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 881 881 882 882 883 -= 7.Trouble Shooting=716 +== 6.2 Can I use DDS20-LB in condensation environment? == 884 884 885 -== 7.1 AT Command input doesn't work == 886 886 719 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 887 887 888 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 889 722 += 7. Trouble Shooting = 890 890 891 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==724 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 892 892 893 893 894 -((( 895 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 896 -))) 727 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 897 897 898 -((( 899 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 900 -))) 901 901 730 +== 7.2 AT Command input doesn't work == 902 902 903 -((( 904 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 905 -))) 906 906 733 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 734 + 735 + 736 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 737 + 738 + 907 907 ((( 908 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 740 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 741 + 742 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 909 909 ))) 910 910 911 911 ... ... @@ -912,7 +912,7 @@ 912 912 = 8. Order Info = 913 913 914 914 915 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**749 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 916 916 917 917 (% style="color:red" %)**XXX**(%%): **The default frequency band** 918 918 ... ... @@ -937,7 +937,7 @@ 937 937 938 938 (% style="color:#037691" %)**Package Includes**: 939 939 940 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1774 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 941 941 942 942 (% style="color:#037691" %)**Dimension and weight**: 943 943
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content