Last modified by Mengting Qiu on 2023/12/14 11:15

From version 96.1
edited by Saxer Lin
on 2023/08/05 14:50
Change comment: Uploaded new attachment "image-20230805145056-3.png", version {1}
To version 118.2
edited by Xiaoling
on 2023/11/28 14:00
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,174 +18,66 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
57 -
58 58  == 1.3 Specification ==
59 59  
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
53 +(% style="color:#037691" %)**LiDAR Sensor:**
62 62  
63 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
55 +* Operation Temperature: -40 ~~ 80 °C
56 +* Operation Humidity: 0~~99.9%RH (no Dew)
57 +* Storage Temperature: -10 ~~ 45°C
58 +* Measure Range: 3cm~~200cm @ 90% reflectivity
59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 +* ToF FoV: ±9°, Total 18°
61 +* Light source: VCSEL
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
63 +== 1.4 Power Consumption ==
67 67  
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 -* Distance resolution : 5mm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
82 82  
83 -(% style="color:#037691" %)**LoRa Spec:**
66 +(% style="color:#037691" %)**Battery Power Mode:**
84 84  
85 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 -* Max +22 dBm constant RF output vs.
87 -* RX sensitivity: down to -139 dBm.
88 -* Excellent blocking immunity
68 +* Idle: 0.003 mA @ 3.3v
69 +* Max : 360 mA
89 89  
90 -(% style="color:#037691" %)**Battery:**
71 +(% style="color:#037691" %)**Continuously mode**:
91 91  
92 -* Li/SOCI2 un-chargeable battery
93 -* Capacity: 8500mAh
94 -* Self-Discharge: <1% / Year @ 25°C
95 -* Max continuously current: 130mA
96 -* Max boost current: 2A, 1 second
73 +* Idle: 21 mA @ 3.3v
74 +* Max : 360 mA
97 97  
98 -(% style="color:#037691" %)**Power Consumption**
76 += 2. Configure DS20L to connect to LoRaWAN network =
99 99  
100 -* Sleep Mode: 5uA @ 3.3v
101 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 -
103 -
104 -== 1.4 Applications ==
105 -
106 -
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
114 -
115 -
116 -(% style="display:none" %)
117 -
118 -== 1.5 Sleep mode and working mode ==
119 -
120 -
121 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
122 -
123 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124 -
125 -
126 -== 1.6 Button & LEDs ==
127 -
128 -
129 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
130 -
131 -
132 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
134 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
137 -)))
138 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 -)))
143 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144 -
145 -
146 -== 1.7 BLE connection ==
147 -
148 -
149 -LDS12-LB support BLE remote configure.
150 -
151 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152 -
153 -* Press button to send an uplink
154 -* Press button to active device.
155 -* Device Power on or reset.
156 -
157 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158 -
159 -
160 -== 1.8 Pin Definitions ==
161 -
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
163 -
164 -
165 -== 1.9 Mechanical ==
166 -
167 -
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
169 -
170 -
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
172 -
173 -
174 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
175 -
176 -
177 -(% style="color:blue" %)**Probe Mechanical:**
178 -
179 -
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181 -
182 -
183 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
184 -
185 185  == 2.1 How it works ==
186 186  
187 187  
188 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
189 189  
190 190  (% style="display:none" %) (%%)
191 191  
... ... @@ -194,15 +194,14 @@
194 194  
195 195  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196 196  
197 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
198 198  
199 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
200 200  
94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
201 201  
202 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
96 +Each DS20L is shipped with a sticker with the default device EUI as below:
203 203  
204 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
205 -
206 206  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
207 207  
208 208  
... ... @@ -230,10 +230,11 @@
230 230  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
231 231  
232 232  
233 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
234 234  
127 +[[image:image-20231128133704-1.png||height="189" width="441"]]
235 235  
236 -Press the button for 5 seconds to activate the LDS12-LB.
129 +Press the button for 5 seconds to activate the DS20L.
237 237  
238 238  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239 239  
... ... @@ -245,7 +245,7 @@
245 245  === 2.3.1 Device Status, FPORT~=5 ===
246 246  
247 247  
248 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
249 249  
250 250  The Payload format is as below.
251 251  
... ... @@ -257,9 +257,9 @@
257 257  
258 258  Example parse in TTNv3
259 259  
260 -[[image:image-20230805103904-1.png||height="131" width="711"]]
153 +[[image:1701149922873-259.png]]
261 261  
262 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
263 263  
264 264  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
265 265  
... ... @@ -314,9 +314,9 @@
314 314  
315 315  
316 316  (((
317 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
210 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
318 318  
319 -periodically send this uplink every 20 minutes, this interval [[can be changed>>https://111]].
212 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
320 320  
321 321  Uplink Payload totals 11 bytes.
322 322  )))
... ... @@ -339,7 +339,7 @@
339 339  ==== (% style="color:blue" %)**Battery Info**(%%) ====
340 340  
341 341  
342 -Check the battery voltage for LDS12-LB.
235 +Check the battery voltage for DS20L.
343 343  
344 344  Ex1: 0x0B45 = 2885mV
345 345  
... ... @@ -383,18 +383,33 @@
383 383  Customers can judge whether they need to adjust the environment based on the signal strength.
384 384  
385 385  
279 +**1) When the sensor detects valid data:**
280 +
281 +[[image:image-20230805155335-1.png||height="145" width="724"]]
282 +
283 +
284 +**2) When the sensor detects invalid data:**
285 +
286 +[[image:image-20230805155428-2.png||height="139" width="726"]]
287 +
288 +
289 +**3) When the sensor is not connected:**
290 +
291 +[[image:image-20230805155515-3.png||height="143" width="725"]]
292 +
293 +
386 386  ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
387 387  
388 388  
389 389  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
390 390  
391 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
299 +Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
392 392  
393 393  **Example:**
394 394  
395 -0x00: Normal uplink packet.
303 +If byte[0]&0x01=0x00 : Normal uplink packet.
396 396  
397 -0x01: Interrupt Uplink Packet.
305 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
398 398  
399 399  
400 400  ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
... ... @@ -420,239 +420,160 @@
420 420  
421 421  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
422 422  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
423 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
424 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
331 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
332 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
425 425  
334 +[[image:image-20230805150315-4.png||height="233" width="723"]]
426 426  
427 -=== 2.3.3 Decode payload in The Things Network ===
428 428  
337 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
429 429  
430 -While using TTN network, you can add the payload format to decode the payload.
431 431  
432 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
340 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
433 433  
342 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
434 434  
435 -(((
436 -The payload decoder function for TTN is here:
437 -)))
344 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
345 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
346 +**Size(bytes)**
347 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
348 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
349 +Reserve(0xFF)
350 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
351 +LiDAR temp
352 +)))|(% style="width:85px" %)Unix TimeStamp
438 438  
439 -(((
440 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
441 -)))
354 +**Interrupt flag & Interrupt level:**
442 442  
443 -
444 -== 2.4 ​Show Data in DataCake IoT Server ==
445 -
446 -
447 -(((
448 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
357 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
358 +**Size(bit)**
359 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
360 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
361 +Interrupt flag
449 449  )))
450 450  
451 -
452 -(((
453 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
364 +* (((
365 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
454 454  )))
455 455  
456 -(((
457 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
458 -)))
368 +For example, in the US915 band, the max payload for different DR is:
459 459  
370 +**a) DR0:** max is 11 bytes so one entry of data
460 460  
461 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
372 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
462 462  
374 +**c) DR2:** total payload includes 11 entries of data
463 463  
464 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
376 +**d) DR3:** total payload includes 22 entries of data.
465 465  
378 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
466 466  
467 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
468 468  
469 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
381 +**Downlink:**
470 470  
471 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
383 +0x31 64 CC 68 0C 64 CC 69 74 05
472 472  
385 +[[image:image-20230805144936-2.png||height="113" width="746"]]
473 473  
474 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
387 +**Uplink:**
475 475  
476 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
389 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
477 477  
478 478  
479 -== 2.5 Datalog Feature ==
392 +**Parsed Value:**
480 480  
394 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
481 481  
482 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
483 483  
397 +[360,176,30,High,True,2023-08-04 02:53:00],
484 484  
485 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
399 +[355,168,30,Low,False,2023-08-04 02:53:29],
486 486  
401 +[245,211,30,Low,False,2023-08-04 02:54:29],
487 487  
488 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
403 +[57,700,30,Low,False,2023-08-04 02:55:29],
489 489  
490 -* (((
491 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
492 -)))
493 -* (((
494 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
495 -)))
405 +[361,164,30,Low,True,2023-08-04 02:56:00],
496 496  
497 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
407 +[337,184,30,Low,False,2023-08-04 02:56:40],
498 498  
499 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
409 +[20,4458,30,Low,False,2023-08-04 02:57:40],
500 500  
411 +[362,173,30,Low,False,2023-08-04 02:58:53],
501 501  
502 -=== 2.5.2 Unix TimeStamp ===
503 503  
414 +**History read from serial port:**
504 504  
505 -LDS12-LB uses Unix TimeStamp format based on
416 +[[image:image-20230805145056-3.png]]
506 506  
507 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
508 508  
509 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
419 +=== 2.3.4 Decode payload in The Things Network ===
510 510  
511 -Below is the converter example
512 512  
513 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
422 +While using TTN network, you can add the payload format to decode the payload.
514 514  
424 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
515 515  
516 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
517 517  
518 -
519 -=== 2.5.3 Set Device Time ===
520 -
521 -
522 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
523 -
524 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
525 -
526 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527 -
528 -
529 -=== 2.5.4 Poll sensor value ===
530 -
531 -
532 -Users can poll sensor values based on timestamps. Below is the downlink command.
533 -
534 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
535 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
536 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
537 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
538 -
539 539  (((
540 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
428 +The payload decoder function for TTN is here:
541 541  )))
542 542  
543 543  (((
544 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
432 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
545 545  )))
546 546  
547 -(((
548 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
549 -)))
550 550  
551 -(((
552 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
553 -)))
436 +== 2.4 ​Show Data in DataCake IoT Server ==
554 554  
555 555  
556 -== 2.6 Frequency Plans ==
557 -
558 -
559 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
560 -
561 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562 -
563 -
564 -== 2.7 LiDAR ToF Measurement ==
565 -
566 -=== 2.7.1 Principle of Distance Measurement ===
567 -
568 -
569 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
570 -
571 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
572 -
573 -
574 -=== 2.7.2 Distance Measurement Characteristics ===
575 -
576 -
577 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
578 -
579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
580 -
581 -
582 582  (((
583 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
440 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
584 584  )))
585 585  
443 +
586 586  (((
587 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
445 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
588 588  )))
589 589  
590 590  (((
591 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
449 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
592 592  )))
593 593  
594 594  
595 -(((
596 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 -)))
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
598 598  
599 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
600 600  
601 -(((
602 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 -)))
456 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
604 604  
605 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
606 606  
607 -(((
608 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 -)))
459 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
610 610  
461 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
611 611  
612 -=== 2.7.3 Notice of usage ===
463 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
613 613  
614 614  
615 -Possible invalid /wrong reading for LiDAR ToF tech:
466 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
616 616  
617 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
468 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
621 621  
622 622  
623 -=== 2.7.4  Reflectivity of different objects ===
471 +== 2.5 Frequency Plans ==
624 624  
625 625  
626 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
627 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
628 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
631 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
632 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
633 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
634 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
635 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
636 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
637 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
638 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
639 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
640 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
641 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
642 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
643 -Unpolished white metal surface
644 -)))|(% style="width:93px" %)130%
645 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
646 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
647 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
474 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
648 648  
476 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
649 649  
650 -= 3. Configure LDS12-LB =
651 651  
479 += 3. Configure DS20L =
480 +
652 652  == 3.1 Configure Methods ==
653 653  
654 654  
655 -LDS12-LB supports below configure method:
484 +DS20L supports below configure method:
656 656  
657 657  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
658 658  
... ... @@ -660,7 +660,6 @@
660 660  
661 661  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
662 662  
663 -
664 664  == 3.2 General Commands ==
665 665  
666 666  
... ... @@ -675,10 +675,10 @@
675 675  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
676 676  
677 677  
678 -== 3.3 Commands special design for LDS12-LB ==
506 +== 3.3 Commands special design for DS20L ==
679 679  
680 680  
681 -These commands only valid for LDS12-LB, as below:
509 +These commands only valid for DS20L, as below:
682 682  
683 683  
684 684  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -720,18 +720,16 @@
720 720  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
721 721  )))
722 722  * (((
723 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
724 -
725 -
726 -
551 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
727 727  )))
728 728  
554 +
729 729  === 3.3.2 Set Interrupt Mode ===
730 730  
731 731  
732 -Feature, Set Interrupt mode for PA8 of pin.
558 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
733 733  
734 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
560 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
735 735  
736 736  (% style="color:blue" %)**AT Command: AT+INTMOD**
737 737  
... ... @@ -742,7 +742,11 @@
742 742  OK
743 743  the mode is 0 =Disable Interrupt
744 744  )))
745 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
571 +|(% style="width:154px" %)(((
572 +AT+INTMOD=3
573 +
574 +(default)
575 +)))|(% style="width:196px" %)(((
746 746  Set Transmit Interval
747 747  0. (Disable Interrupt),
748 748  ~1. (Trigger by rising and falling edge)
... ... @@ -761,38 +761,77 @@
761 761  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
762 762  
763 763  
764 -=== 3.3.3  Set Power Output Duration ===
765 765  
766 -Control the output duration 3V3 . Before each sampling, device will
595 +== 3.3.3 Set work mode ==
767 767  
768 -~1. first enable the power output to external sensor,
769 769  
770 -2. keep it on as per duration, read sensor value and construct uplink payload
598 +Feature: Switch working mode
771 771  
772 -3. final, close the power output.
600 +(% style="color:blue" %)**AT Command: AT+MOD**
773 773  
774 -(% style="color:blue" %)**AT Command: AT+3V3T**
602 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
603 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response**
604 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
605 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
606 +OK
775 775  
776 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
608 +Attention:Take effect after ATZ
609 +)))
610 +
611 +(% style="color:blue" %)**Downlink Command:**
612 +
613 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
614 +
615 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
616 +
617 +
618 +=== 3.3.4 Set threshold and threshold mode ===
619 +
620 +
621 +Feature, Set threshold and threshold mode
622 +
623 +When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms.
624 +
625 +**AT Command: AT+DOL**
626 +
627 +(% border="1" cellspacing="4" style="width:571.818px" %)
628 +|(% style="width:172px" %)**Command Example**|(% style="width:279px" %)**Function**|(% style="width:118px" %)**Response**
629 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
630 +0,0,0,0,400
631 +
779 779  OK
780 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
633 +)))
634 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
782 782  
783 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 -Format: Command Code (0x07) followed by 3 bytes.
785 785  
786 -The first byte is 01,the second and third bytes are the time to turn on.
637 +(% border="1" cellspacing="4" style="width:668.818px" %)
638 +|(% rowspan="11" style="width:166px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits
639 +|(% style="width:251px" %)1:Use upper and lower limits
640 +|(% style="width:251px" %)2:Less than the lower limit
641 +|(% style="width:251px" %)3:Greater than the lower limit
642 +|(% style="width:251px" %)4:Less than the upper limit
643 +|(% style="width:251px" %)5: Greater than the upper limit
644 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
645 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
646 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
647 +|(% style="width:251px" %)1 Person or object counting statistics
648 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
649 +0~~10000ms
787 787  
788 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
651 +
652 +)))
790 790  
654 +**Downlink Command: 0x07**
791 791  
656 +Format: Command Code (0x07) followed by 9bytes.
657 +
658 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
659 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
660 +
792 792  = 4. Battery & Power Consumption =
793 793  
794 794  
795 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
664 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
796 796  
797 797  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
798 798  
... ... @@ -801,7 +801,7 @@
801 801  
802 802  
803 803  (% class="wikigeneratedid" %)
804 -User can change firmware LDS12-LB to:
673 +User can change firmware DS20L to:
805 805  
806 806  * Change Frequency band/ region.
807 807  
... ... @@ -809,7 +809,7 @@
809 809  
810 810  * Fix bugs.
811 811  
812 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
681 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
813 813  
814 814  Methods to Update Firmware:
815 815  
... ... @@ -817,13 +817,12 @@
817 817  
818 818  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
819 819  
820 -
821 821  = 6. FAQ =
822 822  
823 -== 6.1 What is the frequency plan for LDS12-LB? ==
691 +== 6.1 What is the frequency plan for DS20L? ==
824 824  
825 825  
826 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
694 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
827 827  
828 828  
829 829  = 7. Trouble Shooting =
... ... @@ -858,7 +858,7 @@
858 858  = 8. Order Info =
859 859  
860 860  
861 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
729 +Part Number: (% style="color:blue" %)**DS20L-XXX**
862 862  
863 863  (% style="color:red" %)**XXX**(%%): **The default frequency band**
864 864  
... ... @@ -878,13 +878,12 @@
878 878  
879 879  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
880 880  
881 -
882 882  = 9. ​Packing Info =
883 883  
884 884  
885 885  (% style="color:#037691" %)**Package Includes**:
886 886  
887 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
754 +* DS20L LoRaWAN Smart Distance Detector x 1
888 888  
889 889  (% style="color:#037691" %)**Dimension and weight**:
890 890  
... ... @@ -896,7 +896,6 @@
896 896  
897 897  * Weight / pcs : g
898 898  
899 -
900 900  = 10. Support =
901 901  
902 902  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content