Last modified by Mengting Qiu on 2023/12/14 11:15

From version 93.1
edited by Saxer Lin
on 2023/08/05 10:45
Change comment: There is no comment for this version
To version 80.1
edited by Xiaoling
on 2023/06/14 15:33
Change comment: Uploaded new attachment "image-20230614153353-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,24 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,14 +44,16 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
48 +* Liquid Level Measurement by Ultrasonic technology
49 +* Measure through container, No need to contact Liquid
50 +* Valid level range 20mm - 2000mm
51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  
... ... @@ -63,23 +63,6 @@
63 63  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 64  * Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
67 -
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 -* Distance resolution : 5mm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
82 -
83 83  (% style="color:#037691" %)**LoRa Spec:**
84 84  
85 85  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -101,295 +101,321 @@
101 101  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 102  
103 103  
104 -== 1.4 Applications ==
90 +== 1.4 Suitable Container & Liquid ==
105 105  
106 106  
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
93 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
94 +* Container shape is regular, and surface is smooth.
95 +* Container Thickness:
96 +** Pure metal material.  2~~8mm, best is 3~~5mm
97 +** Pure non metal material: <10 mm
98 +* Pure liquid without irregular deposition.
114 114  
115 115  
116 116  (% style="display:none" %)
117 117  
118 -== 1.5 Sleep mode and working mode ==
103 +== 1.5 Install DDS20-LB ==
119 119  
120 120  
121 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
106 +(% style="color:blue" %)**Step 1**(%%) ** Choose the installation point.**
122 122  
123 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
108 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
124 124  
110 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
125 125  
126 -== 1.6 Button & LEDs ==
127 127  
113 +(((
114 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
115 +)))
128 128  
129 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
130 -
131 -
132 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
134 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
117 +(((
118 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
137 137  )))
138 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 -)))
143 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144 144  
121 +[[image:image-20230613143052-5.png]]
145 145  
146 -== 1.7 BLE connection ==
147 147  
124 +No polish needed if the container is shine metal surface without paint or non-metal container.
148 148  
149 -LDS12-LB support BLE remote configure.
126 +[[image:image-20230613143125-6.png]]
150 150  
151 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152 152  
153 -* Press button to send an uplink
154 -* Press button to active device.
155 -* Device Power on or reset.
129 +(((
130 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
131 +)))
156 156  
157 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
133 +(((
134 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
135 +)))
158 158  
137 +(((
138 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
139 +)))
159 159  
160 -== 1.8 Pin Definitions ==
141 +(((
142 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
143 +)))
161 161  
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
163 163  
146 +(((
147 +(% style="color:blue" %)**LED Status:**
148 +)))
164 164  
165 -== 1.9 Mechanical ==
150 +* (((
151 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
152 +)))
166 166  
154 +* (((
155 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
156 +)))
157 +* (((
158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
159 +)))
167 167  
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
161 +(((
162 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
163 +)))
169 169  
170 170  
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
166 +(((
167 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
168 +)))
172 172  
173 173  
174 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171 +(((
172 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
173 +)))
175 175  
175 +(((
176 +Prepare Eproxy AB glue.
177 +)))
176 176  
177 -(% style="color:blue" %)**Probe Mechanical:**
179 +(((
180 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
181 +)))
178 178  
183 +(((
184 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
185 +)))
179 179  
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
187 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
181 181  
182 182  
183 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
190 +(((
191 +(% style="color:red" %)**Note :**
184 184  
185 -== 2.1 How it works ==
193 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
194 +)))
186 186  
196 +(((
197 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
198 +)))
187 187  
188 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
189 189  
190 -(% style="display:none" %) (%%)
201 +== 1.6 Applications ==
191 191  
192 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193 193  
204 +* Smart liquid control solution
194 194  
195 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
206 +* Smart liquefied gas solution
196 196  
197 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198 198  
199 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
209 +== 1.7 Precautions ==
200 200  
201 201  
202 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
212 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
203 203  
204 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
214 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 205  
206 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
216 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
207 207  
218 +(% style="display:none" %)
208 208  
209 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
220 +== 1.8 Sleep mode and working mode ==
210 210  
211 211  
212 -(% style="color:blue" %)**Register the device**
223 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
213 213  
214 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
225 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
215 215  
216 216  
217 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
228 +== 1.9 Button & LEDs ==
218 218  
219 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
220 220  
231 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
221 221  
222 -(% style="color:blue" %)**Add APP EUI in the application**
223 223  
234 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
235 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
236 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
237 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
238 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
239 +)))
240 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
241 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
242 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
244 +)))
245 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
224 224  
225 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
226 226  
248 +== 1.10 BLE connection ==
227 227  
228 -(% style="color:blue" %)**Add APP KEY**
229 229  
230 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
251 +DDS20-LB support BLE remote configure.
231 231  
253 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
232 232  
233 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
255 +* Press button to send an uplink
256 +* Press button to active device.
257 +* Device Power on or reset.
234 234  
259 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
235 235  
236 -Press the button for 5 seconds to activate the LDS12-LB.
237 237  
238 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
262 +== 1.11 Pin Definitions ==
239 239  
240 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
264 +[[image:image-20230523174230-1.png]]
241 241  
242 242  
243 -== 2.3 ​Uplink Payload ==
267 +== 1.12 Mechanical ==
244 244  
245 -=== 2.3.1 Device Status, FPORT~=5 ===
246 246  
270 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
247 247  
248 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
249 249  
250 -The Payload format is as below.
273 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
251 251  
252 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
253 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 -**Size(bytes)**
255 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
256 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
257 257  
258 -Example parse in TTNv3
276 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
259 259  
260 -[[image:image-20230805103904-1.png||height="131" width="711"]]
261 261  
262 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
279 +(% style="color:blue" %)**Probe Mechanical:**
263 263  
264 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
281 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
265 265  
266 -(% style="color:blue" %)**Frequency Band**:
267 267  
268 -0x01: EU868
284 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
269 269  
270 -0x02: US915
271 271  
272 -0x03: IN865
287 += 2. Configure DDS20-LB to connect to LoRaWAN network =
273 273  
274 -0x04: AU915
289 +== 2.1 How it works ==
275 275  
276 -0x05: KZ865
277 277  
278 -0x06: RU864
292 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
279 279  
280 -0x07: AS923
294 +(% style="display:none" %) (%%)
281 281  
282 -0x08: AS923-1
296 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
283 283  
284 -0x09: AS923-2
285 285  
286 -0x0a: AS923-3
299 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
287 287  
288 -0x0b: CN470
301 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
289 289  
290 -0x0c: EU433
303 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
291 291  
292 -0x0d: KR920
293 293  
294 -0x0e: MA869
306 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
295 295  
296 -(% style="color:blue" %)**Sub-Band**:
308 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
297 297  
298 -AU915 and US915:value 0x00 ~~ 0x08
310 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
299 299  
300 -CN470: value 0x0B ~~ 0x0C
301 301  
302 -Other Bands: Always 0x00
313 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
303 303  
304 -(% style="color:blue" %)**Battery Info**:
305 305  
306 -Check the battery voltage.
316 +(% style="color:blue" %)**Register the device**
307 307  
308 -Ex1: 0x0B45 = 2885mV
318 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
309 309  
310 -Ex2: 0x0B49 = 2889mV
311 311  
321 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
312 312  
313 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
314 314  
315 315  
316 -(((
317 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
326 +(% style="color:blue" %)**Add APP EUI in the application**
318 318  
319 -periodically send this uplink every 20 minutes, this interval [[can be changed>>https://111]].
320 320  
321 -Uplink Payload totals 11 bytes.
322 -)))
329 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
323 323  
324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 -**Size(bytes)**
327 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 -[[Message Type>>||anchor="HMessageType"]]
334 -)))
335 335  
336 -[[image:image-20230805104104-2.png||height="136" width="754"]]
332 +(% style="color:blue" %)**Add APP KEY**
337 337  
334 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
338 338  
339 -==== (% style="color:blue" %)**Battery Info**(%%) ====
340 340  
337 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
341 341  
342 -Check the battery voltage for LDS12-LB.
343 343  
344 -Ex1: 0x0B45 = 2885mV
340 +Press the button for 5 seconds to activate the DDS20-LB.
345 345  
346 -Ex2: 0x0B49 = 2889mV
342 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
347 347  
344 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
348 348  
349 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
350 350  
347 +== 2.3  ​Uplink Payload ==
351 351  
352 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
353 353  
350 +(((
351 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
352 +)))
354 354  
355 -**Example**:
354 +(((
355 +Uplink payload includes in total 8 bytes.
356 +)))
356 356  
357 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
358 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
359 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
360 +**Size(bytes)**
361 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
362 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
363 +[[Distance>>||anchor="H2.3.2A0Distance"]]
364 +(unit: mm)
365 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
366 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
367 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
358 358  
359 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
369 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
360 360  
361 361  
362 -==== (% style="color:blue" %)**Distance**(%%) ====
372 +=== 2.3.1  Battery Info ===
363 363  
364 364  
365 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
375 +Check the battery voltage for DDS20-LB.
366 366  
377 +Ex1: 0x0B45 = 2885mV
367 367  
368 -**Example**:
379 +Ex2: 0x0B49 = 2889mV
369 369  
370 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371 371  
382 +=== 2.3.2  Distance ===
372 372  
373 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
374 374  
385 +(((
386 +Get the distance. Flat object range 20mm - 2000mm.
387 +)))
375 375  
376 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
389 +(((
390 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
377 377  
392 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
393 +)))
378 378  
379 -**Example**:
395 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
380 380  
381 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
397 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
382 382  
383 -Customers can judge whether they need to adjust the environment based on the signal strength.
384 384  
400 +=== 2.3.3  Interrupt Pin ===
385 385  
386 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
387 387  
388 -
389 389  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
390 390  
391 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
392 -
393 393  **Example:**
394 394  
395 395  0x00: Normal uplink packet.
... ... @@ -397,53 +397,53 @@
397 397  0x01: Interrupt Uplink Packet.
398 398  
399 399  
400 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
412 +=== 2.3.4  DS18B20 Temperature sensor ===
401 401  
402 402  
403 -Characterize the internal temperature value of the sensor.
415 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
404 404  
405 -**Example: **
406 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
407 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
417 +**Example**:
408 408  
419 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
409 409  
410 -==== (% style="color:blue" %)**Message Type**(%%) ====
421 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
411 411  
412 412  
424 +=== 2.3.5  Sensor Flag ===
425 +
426 +
413 413  (((
414 -For a normal uplink payload, the message type is always 0x01.
428 +0x01: Detect Ultrasonic Sensor
415 415  )))
416 416  
417 417  (((
418 -Valid Message Type:
432 +0x00: No Ultrasonic Sensor
419 419  )))
420 420  
421 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
422 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
423 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
424 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
425 425  
436 +=== 2.3.6  Decode payload in The Things Network ===
426 426  
427 -=== 2.3.3 Decode payload in The Things Network ===
428 428  
429 -
430 430  While using TTN network, you can add the payload format to decode the payload.
431 431  
432 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
441 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
433 433  
443 +The payload decoder function for TTN V3 is here:
434 434  
435 435  (((
436 -The payload decoder function for TTN is here:
446 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
437 437  )))
438 438  
439 -(((
440 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
441 -)))
442 442  
450 +== 2.4  Uplink Interval ==
443 443  
444 -== 2.4 ​Show Data in DataCake IoT Server ==
445 445  
453 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
446 446  
455 +
456 +== 2.5  ​Show Data in DataCake IoT Server ==
457 +
458 +
447 447  (((
448 448  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
449 449  )))
... ... @@ -466,7 +466,7 @@
466 466  
467 467  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
468 468  
469 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
481 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
470 470  
471 471  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
472 472  
... ... @@ -476,22 +476,22 @@
476 476  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
477 477  
478 478  
479 -== 2.5 Datalog Feature ==
491 +== 2.6 Datalog Feature ==
480 480  
481 481  
482 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
494 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
483 483  
484 484  
485 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
497 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
486 486  
487 487  
488 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
500 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
489 489  
490 490  * (((
491 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
503 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
492 492  )))
493 493  * (((
494 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
506 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
495 495  )))
496 496  
497 497  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -499,10 +499,10 @@
499 499  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
500 500  
501 501  
502 -=== 2.5.2 Unix TimeStamp ===
514 +=== 2.6.2 Unix TimeStamp ===
503 503  
504 504  
505 -LDS12-LB uses Unix TimeStamp format based on
517 +DDS20-LB uses Unix TimeStamp format based on
506 506  
507 507  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
508 508  
... ... @@ -516,23 +516,23 @@
516 516  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
517 517  
518 518  
519 -=== 2.5.3 Set Device Time ===
531 +=== 2.6.3 Set Device Time ===
520 520  
521 521  
522 522  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
523 523  
524 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
536 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
525 525  
526 526  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527 527  
528 528  
529 -=== 2.5.4 Poll sensor value ===
541 +=== 2.6.4 Poll sensor value ===
530 530  
531 531  
532 532  Users can poll sensor values based on timestamps. Below is the downlink command.
533 533  
534 534  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
535 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
547 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
536 536  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
537 537  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
538 538  
... ... @@ -549,110 +549,24 @@
549 549  )))
550 550  
551 551  (((
552 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
564 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
553 553  )))
554 554  
555 555  
556 -== 2.6 Frequency Plans ==
568 +== 2.7 Frequency Plans ==
557 557  
558 558  
559 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
571 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
560 560  
561 561  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562 562  
563 563  
564 -== 2.7 LiDAR ToF Measurement ==
576 += 3. Configure DDS20-LB =
565 565  
566 -=== 2.7.1 Principle of Distance Measurement ===
567 -
568 -
569 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
570 -
571 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
572 -
573 -
574 -=== 2.7.2 Distance Measurement Characteristics ===
575 -
576 -
577 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
578 -
579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
580 -
581 -
582 -(((
583 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
584 -)))
585 -
586 -(((
587 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
588 -)))
589 -
590 -(((
591 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
592 -)))
593 -
594 -
595 -(((
596 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 -)))
598 -
599 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
600 -
601 -(((
602 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 -)))
604 -
605 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
606 -
607 -(((
608 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 -)))
610 -
611 -
612 -=== 2.7.3 Notice of usage ===
613 -
614 -
615 -Possible invalid /wrong reading for LiDAR ToF tech:
616 -
617 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
621 -
622 -
623 -=== 2.7.4  Reflectivity of different objects ===
624 -
625 -
626 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
627 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
628 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
631 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
632 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
633 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
634 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
635 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
636 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
637 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
638 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
639 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
640 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
641 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
642 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
643 -Unpolished white metal surface
644 -)))|(% style="width:93px" %)130%
645 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
646 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
647 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
648 -
649 -
650 -= 3. Configure LDS12-LB =
651 -
652 652  == 3.1 Configure Methods ==
653 653  
654 654  
655 -LDS12-LB supports below configure method:
581 +DDS20-LB supports below configure method:
656 656  
657 657  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
658 658  
... ... @@ -675,10 +675,10 @@
675 675  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
676 676  
677 677  
678 -== 3.3 Commands special design for LDS12-LB ==
604 +== 3.3 Commands special design for DDS20-LB ==
679 679  
680 680  
681 -These commands only valid for LDS12-LB, as below:
607 +These commands only valid for DDS20-LB, as below:
682 682  
683 683  
684 684  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -693,7 +693,7 @@
693 693  )))
694 694  
695 695  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
696 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
622 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
697 697  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
698 698  30000
699 699  OK
... ... @@ -736,7 +736,7 @@
736 736  (% style="color:blue" %)**AT Command: AT+INTMOD**
737 737  
738 738  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
739 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
665 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
740 740  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
741 741  0
742 742  OK
... ... @@ -761,38 +761,10 @@
761 761  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
762 762  
763 763  
764 -=== 3.3.3  Set Power Output Duration ===
765 -
766 -Control the output duration 3V3 . Before each sampling, device will
767 -
768 -~1. first enable the power output to external sensor,
769 -
770 -2. keep it on as per duration, read sensor value and construct uplink payload
771 -
772 -3. final, close the power output.
773 -
774 -(% style="color:blue" %)**AT Command: AT+3V3T**
775 -
776 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
779 -OK
780 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
782 -
783 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 -Format: Command Code (0x07) followed by 3 bytes.
785 -
786 -The first byte is 01,the second and third bytes are the time to turn on.
787 -
788 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
790 -
791 -
792 792  = 4. Battery & Power Consumption =
793 793  
794 794  
795 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
693 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
796 796  
797 797  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
798 798  
... ... @@ -801,7 +801,7 @@
801 801  
802 802  
803 803  (% class="wikigeneratedid" %)
804 -User can change firmware LDS12-LB to:
702 +User can change firmware DDS20-LB to:
805 805  
806 806  * Change Frequency band/ region.
807 807  
... ... @@ -809,7 +809,7 @@
809 809  
810 810  * Fix bugs.
811 811  
812 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
710 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
813 813  
814 814  Methods to Update Firmware:
815 815  
... ... @@ -820,38 +820,39 @@
820 820  
821 821  = 6. FAQ =
822 822  
823 -== 6.1 What is the frequency plan for LDS12-LB? ==
721 +== 6.1  What is the frequency plan for DDS20-LB? ==
824 824  
825 825  
826 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
724 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
827 827  
828 828  
829 -= 7Trouble Shooting =
727 +== 6.2  Can I use DDS20-LB in condensation environment? ==
830 830  
831 -== 7.1 AT Command input doesn't work ==
832 832  
730 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
833 833  
834 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
835 835  
733 += 7.  Trouble Shooting =
836 836  
837 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
735 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
838 838  
839 839  
840 -(((
841 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
842 -)))
738 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
843 843  
844 -(((
845 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
846 -)))
847 847  
741 +== 7.2  AT Command input doesn't work ==
848 848  
849 -(((
850 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
851 -)))
852 852  
744 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
745 +
746 +
747 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
748 +
749 +
853 853  (((
854 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
751 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
752 +
753 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
855 855  )))
856 856  
857 857  
... ... @@ -858,7 +858,7 @@
858 858  = 8. Order Info =
859 859  
860 860  
861 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
760 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
862 862  
863 863  (% style="color:red" %)**XXX**(%%): **The default frequency band**
864 864  
... ... @@ -884,7 +884,7 @@
884 884  
885 885  (% style="color:#037691" %)**Package Includes**:
886 886  
887 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
786 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
888 888  
889 889  (% style="color:#037691" %)**Dimension and weight**:
890 890  
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content