Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 7 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LDS12-LB -- LoRaWANLiDAR ToF Distance Sensor User Manual1 +DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 4153353-1.png]]2 +[[image:image-20230613133716-2.png||height="717" width="717"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,24 +18,24 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 22 22 23 23 24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWANLiDAR ToF (Timeof Flight) DistanceSensor**(%%) for Internet of Things solution. Itis capable to measure thedistancetoanobject as closeas 10 centimeters(+/- 5cm up to6m)andasfar as 12 meters(+/-1% startingat6m)!. TheLiDAR probeuseslaserinductiontechnologyfordistancemeasurement.25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server. 25 25 26 -The LDS12-LBcan be applied toscenariossuch as horizontal distancemeasurement, parkingmanagementsystem,objectproximityandpresencedetection,intelligent trashcan management system,robotobstacle avoidance,automaticcontrol,sewer,etc.27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 27 27 28 - Itdetects the distancebetweenemeasured object andthe sensor,anduploadsthevalueviawireless toLoRaWAN IoT Server.29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 29 29 30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 31 32 - LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 - LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]39 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,17 +44,18 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 48 +* Liquid Level Measurement by Ultrasonic technology 49 +* Measure through container, No need to contact Liquid 50 +* Valid level range 20mm - 2000mm 51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 57 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 57 - 58 58 == 1.3 Specification == 59 59 60 60 ... ... @@ -63,23 +63,6 @@ 63 63 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 64 64 * Operating Temperature: -40 ~~ 85°C 65 65 66 -(% style="color:#037691" %)**Probe Specification:** 67 - 68 -* Storage temperature:-20℃~~75℃ 69 -* Operating temperature : -20℃~~60℃ 70 -* Measure Distance: 71 -** 0.1m ~~ 12m @ 90% Reflectivity 72 -** 0.1m ~~ 4m @ 10% Reflectivity 73 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 74 -* Distance resolution : 5mm 75 -* Ambient light immunity : 70klux 76 -* Enclosure rating : IP65 77 -* Light source : LED 78 -* Central wavelength : 850nm 79 -* FOV : 3.6° 80 -* Material of enclosure : ABS+PC 81 -* Wire length : 25cm 82 - 83 83 (% style="color:#037691" %)**LoRa Spec:** 84 84 85 85 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -100,30 +100,141 @@ 100 100 * Sleep Mode: 5uA @ 3.3v 101 101 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 102 102 88 +== 1.4 Suitable Container & Liquid == 103 103 104 -== 1.4 Applications == 105 105 91 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 92 +* Container shape is regular, and surface is smooth. 93 +* Container Thickness: 94 +** Pure metal material. 2~~8mm, best is 3~~5mm 95 +** Pure non metal material: <10 mm 96 +* Pure liquid without irregular deposition.(% style="display:none" %) 106 106 107 -* Horizontal distance measurement 108 -* Parking management system 109 -* Object proximity and presence detection 110 -* Intelligent trash can management system 111 -* Robot obstacle avoidance 112 -* Automatic control 113 -* Sewer 98 +== 1.5 Install DDS20-LB == 114 114 115 115 116 -(% style=" display:none" %)101 +(% style="color:blue" %)**Step 1**(%%): Choose the installation point. 117 117 118 - ==1.5Sleep modeandworkingmode==103 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 119 119 105 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 120 120 107 + 108 +((( 109 +(% style="color:blue" %)**Step 2**(%%): Polish the installation point. 110 +))) 111 + 112 +((( 113 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 114 +))) 115 + 116 +[[image:image-20230613143052-5.png]] 117 + 118 + 119 +No polish needed if the container is shine metal surface without paint or non-metal container. 120 + 121 +[[image:image-20230613143125-6.png]] 122 + 123 + 124 +((( 125 +(% style="color:blue" %)**Step3: **(%%)Test the installation point. 126 +))) 127 + 128 +((( 129 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 130 +))) 131 + 132 +((( 133 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 134 +))) 135 + 136 +((( 137 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 138 +))) 139 + 140 + 141 +((( 142 +(% style="color:red" %)**LED Status:** 143 +))) 144 + 145 +* ((( 146 +Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 147 +))) 148 + 149 +* ((( 150 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 151 +))) 152 +* ((( 153 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 154 +))) 155 + 156 +((( 157 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 158 +))) 159 + 160 + 161 +((( 162 +(% style="color:red" %)**Note 2:** 163 +))) 164 + 165 +((( 166 +(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 167 +))) 168 + 169 + 170 +((( 171 +(% style="color:blue" %)**Step4: **(%%)Install use Epoxy ab glue. 172 +))) 173 + 174 +((( 175 +Prepare Eproxy AB glue. 176 +))) 177 + 178 +((( 179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 180 +))) 181 + 182 +((( 183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 184 +))) 185 + 186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 187 + 188 + 189 +((( 190 +(% style="color:red" %)**Note 1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 191 +))) 192 + 193 +((( 194 +(% style="color:red" %)**Note 2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 195 +))) 196 + 197 + 198 +== 1.6 Applications == 199 + 200 + 201 +* Smart liquid control solution. 202 + 203 +* Smart liquefied gas solution. 204 + 205 +== 1.7 Precautions == 206 + 207 + 208 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 209 + 210 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 211 + 212 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %) 213 + 214 +== 1.8 Sleep mode and working mode == 215 + 216 + 121 121 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 122 122 123 123 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 124 124 125 125 126 -== 1. 6Button & LEDs ==222 +== 1.9 Button & LEDs == 127 127 128 128 129 129 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -130,7 +130,7 @@ 130 130 131 131 132 132 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 133 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**229 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 134 134 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 135 135 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 136 136 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -142,12 +142,11 @@ 142 142 ))) 143 143 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 144 144 241 +== 1.10 BLE connection == 145 145 146 -== 1.7 BLE connection == 147 147 244 +DDS20-LB support BLE remote configure. 148 148 149 -LDS12-LB support BLE remote configure. 150 - 151 151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 152 152 153 153 * Press button to send an uplink ... ... @@ -157,12 +157,12 @@ 157 157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 158 158 159 159 160 -== 1. 8Pin Definitions ==255 +== 1.11 Pin Definitions == 161 161 162 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]257 +[[image:image-20230523174230-1.png]] 163 163 164 164 165 -== 1. 9Mechanical ==260 +== 1.12 Mechanical == 166 166 167 167 168 168 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -176,16 +176,18 @@ 176 176 177 177 (% style="color:blue" %)**Probe Mechanical:** 178 178 274 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 179 179 180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 181 181 277 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 182 182 183 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 184 184 280 += 2. Configure DDS20-LB to connect to LoRaWAN network = 281 + 185 185 == 2.1 How it works == 186 186 187 187 188 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate theLDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.285 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 189 189 190 190 (% style="display:none" %) (%%) 191 191 ... ... @@ -196,12 +196,12 @@ 196 196 197 197 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 198 198 199 -[[image:image-2023061 5153004-2.png||height="459" width="800"]](% style="display:none" %)296 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 200 200 201 201 202 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.299 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 203 203 204 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:301 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 205 205 206 206 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 207 207 ... ... @@ -230,10 +230,10 @@ 230 230 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 231 231 232 232 233 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB330 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 234 234 235 235 236 -Press the button for 5 seconds to activate the LDS12-LB.333 +Press the button for 5 seconds to activate the DDS20-LB. 237 237 238 238 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 239 239 ... ... @@ -240,118 +240,75 @@ 240 240 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 241 241 242 242 243 -== 2.3 Uplink Payload == 340 +== 2.3 Uplink Payload == 244 244 245 -=== 2.3.1 Device Status, FPORT~=5 === 246 246 343 +((( 344 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 345 +))) 247 247 248 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 347 +((( 348 +Uplink payload includes in total 8 bytes. 349 +))) 249 249 250 -The Payload format is as below. 251 - 252 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 253 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 351 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 352 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 254 254 **Size(bytes)** 255 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 256 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 354 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 355 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 356 +[[Distance>>||anchor="H2.3.2A0Distance"]] 357 +(unit: mm) 358 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 359 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 360 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 257 257 258 - ExampleparseTTNv3362 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 259 259 260 -[[image:image-20230805103904-1.png||height="131" width="711"]] 261 261 262 - (%style="color:blue"%)**SensorModel**(%%): For LDS12-LB, this value is 0x24365 +=== 2.3.1 Battery Info === 263 263 264 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 265 265 266 - (%style="color:blue"%)**FrequencyBand**:368 +Check the battery voltage for DDS20-LB. 267 267 268 -0x01: EU868 269 - 270 -0x02: US915 271 - 272 -0x03: IN865 273 - 274 -0x04: AU915 275 - 276 -0x05: KZ865 277 - 278 -0x06: RU864 279 - 280 -0x07: AS923 281 - 282 -0x08: AS923-1 283 - 284 -0x09: AS923-2 285 - 286 -0x0a: AS923-3 287 - 288 -0x0b: CN470 289 - 290 -0x0c: EU433 291 - 292 -0x0d: KR920 293 - 294 -0x0e: MA869 295 - 296 -(% style="color:blue" %)**Sub-Band**: 297 - 298 -AU915 and US915:value 0x00 ~~ 0x08 299 - 300 -CN470: value 0x0B ~~ 0x0C 301 - 302 -Other Bands: Always 0x00 303 - 304 -(% style="color:blue" %)**Battery Info**: 305 - 306 -Check the battery voltage. 307 - 308 308 Ex1: 0x0B45 = 2885mV 309 309 310 310 Ex2: 0x0B49 = 2889mV 311 311 312 312 313 -=== 2.3.2 UplinkPayload, FPORT~=2===375 +=== 2.3.2 Distance === 314 314 315 315 316 316 ((( 317 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 379 +Get the distance. Flat object range 20mm - 2000mm. 380 +))) 318 318 319 -periodically send this uplink every 20 minutes, this interval [[can be changed>>https://111]]. 382 +((( 383 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 320 320 321 - UplinkPayload totals11bytes.385 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 322 322 ))) 323 323 324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 325 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 326 -**Size(bytes)** 327 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 328 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 329 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 330 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 331 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 332 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 333 -[[Message Type>>||anchor="HMessageType"]] 334 -))) 388 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 335 335 336 - [[image:image-20230805104104-2.png||height="136"width="754"]]390 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 337 337 392 +=== 2.3.3 Interrupt Pin === 338 338 339 -==== (% style="color:blue" %)**Battery Info**(%%) ==== 340 340 395 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 341 341 342 - Check the battery voltagefor LDS12-LB.397 +**Example:** 343 343 344 - Ex1:0x0B45= 2885mV399 +0x00: Normal uplink packet. 345 345 346 - Ex2:0x0B49=2889mV401 +0x01: Interrupt Uplink Packet. 347 347 348 348 349 -=== =(%style="color:blue" %)**DS18B20 Temperature sensor**(%%)====404 +=== 2.3.4 DS18B20 Temperature sensor === 350 350 351 351 352 352 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 353 353 354 - 355 355 **Example**: 356 356 357 357 If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -359,91 +359,41 @@ 359 359 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 360 360 361 361 362 -=== =(%style="color:blue"%)**Distance**(%%)====416 +=== 2.3.5 Sensor Flag === 363 363 364 364 365 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 366 - 367 - 368 -**Example**: 369 - 370 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 371 - 372 - 373 -==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 374 - 375 - 376 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 377 - 378 - 379 -**Example**: 380 - 381 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 382 - 383 -Customers can judge whether they need to adjust the environment based on the signal strength. 384 - 385 - 386 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 387 - 388 - 389 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 390 - 391 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 392 - 393 -**Example:** 394 - 395 -0x00: Normal uplink packet. 396 - 397 -0x01: Interrupt Uplink Packet. 398 - 399 - 400 -==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 401 - 402 - 403 -Characterize the internal temperature value of the sensor. 404 - 405 -**Example: ** 406 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 407 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 408 - 409 - 410 -==== (% style="color:blue" %)**Message Type**(%%) ==== 411 - 412 - 413 413 ((( 414 - Fora normal uplink payload, themessagetypeis always0x01.420 +0x01: Detect Ultrasonic Sensor 415 415 ))) 416 416 417 417 ((( 418 - ValidMessage Type:424 +0x00: No Ultrasonic Sensor 419 419 ))) 420 420 421 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 422 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 423 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 424 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 425 425 428 +=== 2.3.6 Decode payload in The Things Network === 426 426 427 -=== 2.3.3 Decode payload in The Things Network === 428 428 429 - 430 430 While using TTN network, you can add the payload format to decode the payload. 431 431 432 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]433 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 433 433 435 +The payload decoder function for TTN V3 is here: 434 434 435 435 ((( 436 -T hepayloaddecoderfunctionforTTNis here:438 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 437 437 ))) 438 438 439 -((( 440 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 441 -))) 442 442 442 +== 2.4 Uplink Interval == 443 443 444 -== 2.4 Show Data in DataCake IoT Server == 445 445 445 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 446 446 447 + 448 +== 2.5 Show Data in DataCake IoT Server == 449 + 450 + 447 447 ((( 448 448 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 449 449 ))) ... ... @@ -466,7 +466,7 @@ 466 466 467 467 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 468 468 469 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**473 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 470 470 471 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 472 472 ... ... @@ -476,22 +476,23 @@ 476 476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 477 477 478 478 479 -== 2.5 Datalog Feature == 480 480 484 +== 2.6 Datalog Feature == 481 481 482 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 483 483 487 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 484 484 485 -=== 2.5.1 Ways to get datalog via LoRaWAN === 486 486 490 +=== 2.6.1 Ways to get datalog via LoRaWAN === 487 487 488 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 489 489 493 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 494 + 490 490 * ((( 491 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.496 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 492 492 ))) 493 493 * ((( 494 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.499 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 495 495 ))) 496 496 497 497 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -499,10 +499,10 @@ 499 499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 500 500 501 501 502 -=== 2. 5.2 Unix TimeStamp ===507 +=== 2.6.2 Unix TimeStamp === 503 503 504 504 505 - LDS12-LB uses Unix TimeStamp format based on510 +DDS20-LB uses Unix TimeStamp format based on 506 506 507 507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 508 508 ... ... @@ -516,23 +516,23 @@ 516 516 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 517 517 518 518 519 -=== 2. 5.3 Set Device Time ===524 +=== 2.6.3 Set Device Time === 520 520 521 521 522 522 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 523 523 524 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).529 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 525 525 526 526 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 527 527 528 528 529 -=== 2. 5.4 Poll sensor value ===534 +=== 2.6.4 Poll sensor value === 530 530 531 531 532 532 Users can poll sensor values based on timestamps. Below is the downlink command. 533 533 534 534 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 535 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**540 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 536 536 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 537 537 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 538 538 ... ... @@ -549,110 +549,24 @@ 549 549 ))) 550 550 551 551 ((( 552 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.557 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 553 553 ))) 554 554 555 555 556 -== 2. 6Frequency Plans ==561 +== 2.7 Frequency Plans == 557 557 558 558 559 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.564 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 560 560 561 561 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 562 562 563 563 564 -= =2.7LiDAR ToF Measurement==569 += 3. Configure DDS20-LB = 565 565 566 -=== 2.7.1 Principle of Distance Measurement === 567 - 568 - 569 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 570 - 571 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 572 - 573 - 574 -=== 2.7.2 Distance Measurement Characteristics === 575 - 576 - 577 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 578 - 579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 580 - 581 - 582 -((( 583 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 584 -))) 585 - 586 -((( 587 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 588 -))) 589 - 590 -((( 591 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 592 -))) 593 - 594 - 595 -((( 596 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 597 -))) 598 - 599 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 600 - 601 -((( 602 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 603 -))) 604 - 605 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 606 - 607 -((( 608 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 609 -))) 610 - 611 - 612 -=== 2.7.3 Notice of usage === 613 - 614 - 615 -Possible invalid /wrong reading for LiDAR ToF tech: 616 - 617 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 618 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 619 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 620 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 621 - 622 - 623 -=== 2.7.4 Reflectivity of different objects === 624 - 625 - 626 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 627 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 628 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 629 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 630 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 631 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 632 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 633 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 634 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 635 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 636 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 637 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 638 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 639 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 640 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 641 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 642 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 643 -Unpolished white metal surface 644 -)))|(% style="width:93px" %)130% 645 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 646 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 647 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 648 - 649 - 650 -= 3. Configure LDS12-LB = 651 - 652 652 == 3.1 Configure Methods == 653 653 654 654 655 - LDS12-LB supports below configure method:574 +DDS20-LB supports below configure method: 656 656 657 657 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 658 658 ... ... @@ -660,7 +660,6 @@ 660 660 661 661 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 662 662 663 - 664 664 == 3.2 General Commands == 665 665 666 666 ... ... @@ -675,10 +675,10 @@ 675 675 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 676 676 677 677 678 -== 3.3 Commands special design for LDS12-LB ==596 +== 3.3 Commands special design for DDS20-LB == 679 679 680 680 681 -These commands only valid for LDS12-LB, as below:599 +These commands only valid for DDS20-LB, as below: 682 682 683 683 684 684 === 3.3.1 Set Transmit Interval Time === ... ... @@ -693,7 +693,7 @@ 693 693 ))) 694 694 695 695 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 696 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**614 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 697 697 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 698 698 30000 699 699 OK ... ... @@ -721,9 +721,6 @@ 721 721 ))) 722 722 * ((( 723 723 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 724 - 725 - 726 - 727 727 ))) 728 728 729 729 === 3.3.2 Set Interrupt Mode === ... ... @@ -736,7 +736,7 @@ 736 736 (% style="color:blue" %)**AT Command: AT+INTMOD** 737 737 738 738 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 739 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**654 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 740 740 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 741 741 0 742 742 OK ... ... @@ -760,39 +760,10 @@ 760 760 761 761 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 762 762 763 - 764 -=== 3.3.3 Set Power Output Duration === 765 - 766 -Control the output duration 3V3 . Before each sampling, device will 767 - 768 -~1. first enable the power output to external sensor, 769 - 770 -2. keep it on as per duration, read sensor value and construct uplink payload 771 - 772 -3. final, close the power output. 773 - 774 -(% style="color:blue" %)**AT Command: AT+3V3T** 775 - 776 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 777 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 778 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 779 -OK 780 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 781 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 782 - 783 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 784 -Format: Command Code (0x07) followed by 3 bytes. 785 - 786 -The first byte is 01,the second and third bytes are the time to turn on. 787 - 788 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 789 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 790 - 791 - 792 792 = 4. Battery & Power Consumption = 793 793 794 794 795 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.681 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 796 796 797 797 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 798 798 ... ... @@ -801,7 +801,7 @@ 801 801 802 802 803 803 (% class="wikigeneratedid" %) 804 -User can change firmware LDS12-LB to:690 +User can change firmware DDS20-LB to: 805 805 806 806 * Change Frequency band/ region. 807 807 ... ... @@ -809,49 +809,51 @@ 809 809 810 810 * Fix bugs. 811 811 812 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**698 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 813 813 814 814 Methods to Update Firmware: 815 815 816 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**702 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 817 817 818 818 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 819 819 820 820 707 + 821 821 = 6. FAQ = 822 822 823 -== 6.1 What is the frequency plan for LDS12-LB? ==710 +== 6.1 What is the frequency plan for DDS20-LB? == 824 824 825 825 826 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]713 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 827 827 828 828 829 -= 7.Trouble Shooting=716 +== 6.2 Can I use DDS20-LB in condensation environment? == 830 830 831 -== 7.1 AT Command input doesn't work == 832 832 719 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 833 833 834 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 835 835 722 += 7. Trouble Shooting = 836 836 837 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==724 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 838 838 839 839 840 -((( 841 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 842 -))) 727 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 843 843 844 -((( 845 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 846 -))) 847 847 730 +== 7.2 AT Command input doesn't work == 848 848 849 -((( 850 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 851 -))) 852 852 733 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 734 + 735 + 736 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 737 + 738 + 853 853 ((( 854 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 740 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 741 + 742 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 855 855 ))) 856 856 857 857 ... ... @@ -858,7 +858,7 @@ 858 858 = 8. Order Info = 859 859 860 860 861 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**749 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 862 862 863 863 (% style="color:red" %)**XXX**(%%): **The default frequency band** 864 864 ... ... @@ -884,7 +884,7 @@ 884 884 885 885 (% style="color:#037691" %)**Package Includes**: 886 886 887 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1775 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 888 888 889 889 (% style="color:#037691" %)**Dimension and weight**: 890 890
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content