Last modified by Mengting Qiu on 2023/12/14 11:15

From version 92.1
edited by Saxer Lin
on 2023/08/05 10:41
Change comment: Uploaded new attachment "image-20230805104104-2.png", version {1}
To version 118.2
edited by Xiaoling
on 2023/11/28 14:00
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,178 +18,66 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
57 -
58 -
59 59  == 1.3 Specification ==
60 60  
61 61  
62 -(% style="color:#037691" %)**Common DC Characteristics:**
53 +(% style="color:#037691" %)**LiDAR Sensor:**
63 63  
64 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 -* Operating Temperature: -40 ~~ 85°C
55 +* Operation Temperature: -40 ~~ 80 °C
56 +* Operation Humidity: 0~~99.9%RH (no Dew)
57 +* Storage Temperature: -10 ~~ 45°C
58 +* Measure Range: 3cm~~200cm @ 90% reflectivity
59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 +* ToF FoV: ±9°, Total 18°
61 +* Light source: VCSEL
66 66  
67 -(% style="color:#037691" %)**Probe Specification:**
63 +== 1.4 Power Consumption ==
68 68  
69 -* Storage temperature:-20℃~~75℃
70 -* Operating temperature : -20℃~~60℃
71 -* Measure Distance:
72 -** 0.1m ~~ 12m @ 90% Reflectivity
73 -** 0.1m ~~ 4m @ 10% Reflectivity
74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution : 5mm
76 -* Ambient light immunity : 70klux
77 -* Enclosure rating : IP65
78 -* Light source : LED
79 -* Central wavelength : 850nm
80 -* FOV : 3.6°
81 -* Material of enclosure : ABS+PC
82 -* Wire length : 25cm
83 83  
84 -(% style="color:#037691" %)**LoRa Spec:**
66 +(% style="color:#037691" %)**Battery Power Mode:**
85 85  
86 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 -* Max +22 dBm constant RF output vs.
88 -* RX sensitivity: down to -139 dBm.
89 -* Excellent blocking immunity
68 +* Idle: 0.003 mA @ 3.3v
69 +* Max : 360 mA
90 90  
91 -(% style="color:#037691" %)**Battery:**
71 +(% style="color:#037691" %)**Continuously mode**:
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self-Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
73 +* Idle: 21 mA @ 3.3v
74 +* Max : 360 mA
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
76 += 2. Configure DS20L to connect to LoRaWAN network =
100 100  
101 -* Sleep Mode: 5uA @ 3.3v
102 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103 -
104 -
105 -
106 -== 1.4 Applications ==
107 -
108 -
109 -* Horizontal distance measurement
110 -* Parking management system
111 -* Object proximity and presence detection
112 -* Intelligent trash can management system
113 -* Robot obstacle avoidance
114 -* Automatic control
115 -* Sewer
116 -
117 -
118 -
119 -(% style="display:none" %)
120 -
121 -== 1.5 Sleep mode and working mode ==
122 -
123 -
124 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
125 -
126 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127 -
128 -
129 -== 1.6 Button & LEDs ==
130 -
131 -
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
133 -
134 -
135 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
137 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 -)))
141 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 -)))
146 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 -
148 -
149 -
150 -== 1.7 BLE connection ==
151 -
152 -
153 -LDS12-LB support BLE remote configure.
154 -
155 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
156 -
157 -* Press button to send an uplink
158 -* Press button to active device.
159 -* Device Power on or reset.
160 -
161 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162 -
163 -
164 -== 1.8 Pin Definitions ==
165 -
166 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
167 -
168 -
169 -== 1.9 Mechanical ==
170 -
171 -
172 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
173 -
174 -
175 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
176 -
177 -
178 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
179 -
180 -
181 -(% style="color:blue" %)**Probe Mechanical:**
182 -
183 -
184 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
185 -
186 -
187 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
188 -
189 189  == 2.1 How it works ==
190 190  
191 191  
192 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
193 193  
194 194  (% style="display:none" %) (%%)
195 195  
... ... @@ -198,15 +198,14 @@
198 198  
199 199  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
200 200  
201 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
202 202  
203 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
204 204  
94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
205 205  
206 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
96 +Each DS20L is shipped with a sticker with the default device EUI as below:
207 207  
208 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
209 -
210 210  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
211 211  
212 212  
... ... @@ -234,10 +234,11 @@
234 234  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
235 235  
236 236  
237 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
238 238  
127 +[[image:image-20231128133704-1.png||height="189" width="441"]]
239 239  
240 -Press the button for 5 seconds to activate the LDS12-LB.
129 +Press the button for 5 seconds to activate the DS20L.
241 241  
242 242  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243 243  
... ... @@ -249,7 +249,7 @@
249 249  === 2.3.1 Device Status, FPORT~=5 ===
250 250  
251 251  
252 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
253 253  
254 254  The Payload format is as below.
255 255  
... ... @@ -261,8 +261,10 @@
261 261  
262 262  Example parse in TTNv3
263 263  
264 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
153 +[[image:1701149922873-259.png]]
265 265  
155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
156 +
266 266  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
267 267  
268 268  (% style="color:blue" %)**Frequency Band**:
... ... @@ -316,11 +316,11 @@
316 316  
317 317  
318 318  (((
319 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
320 -)))
210 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
321 321  
322 -(((
323 -Uplink payload includes in total 11 bytes.
212 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
213 +
214 +Uplink Payload totals 11 bytes.
324 324  )))
325 325  
326 326  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -335,13 +335,13 @@
335 335  [[Message Type>>||anchor="HMessageType"]]
336 336  )))
337 337  
338 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
229 +[[image:image-20230805104104-2.png||height="136" width="754"]]
339 339  
340 340  
341 341  ==== (% style="color:blue" %)**Battery Info**(%%) ====
342 342  
343 343  
344 -Check the battery voltage for LDS12-LB.
235 +Check the battery voltage for DS20L.
345 345  
346 346  Ex1: 0x0B45 = 2885mV
347 347  
... ... @@ -385,18 +385,33 @@
385 385  Customers can judge whether they need to adjust the environment based on the signal strength.
386 386  
387 387  
279 +**1) When the sensor detects valid data:**
280 +
281 +[[image:image-20230805155335-1.png||height="145" width="724"]]
282 +
283 +
284 +**2) When the sensor detects invalid data:**
285 +
286 +[[image:image-20230805155428-2.png||height="139" width="726"]]
287 +
288 +
289 +**3) When the sensor is not connected:**
290 +
291 +[[image:image-20230805155515-3.png||height="143" width="725"]]
292 +
293 +
388 388  ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
389 389  
390 390  
391 391  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
392 392  
393 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
299 +Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
394 394  
395 395  **Example:**
396 396  
397 -0x00: Normal uplink packet.
303 +If byte[0]&0x01=0x00 : Normal uplink packet.
398 398  
399 -0x01: Interrupt Uplink Packet.
305 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
400 400  
401 401  
402 402  ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
... ... @@ -422,248 +422,160 @@
422 422  
423 423  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
424 424  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
425 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
426 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
331 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
332 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
427 427  
334 +[[image:image-20230805150315-4.png||height="233" width="723"]]
428 428  
429 429  
430 -=== 2.3.3 Decode payload in The Things Network ===
337 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
431 431  
432 432  
433 -While using TTN network, you can add the payload format to decode the payload.
340 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
434 434  
435 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
342 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
436 436  
344 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
345 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
346 +**Size(bytes)**
347 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
348 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
349 +Reserve(0xFF)
350 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
351 +LiDAR temp
352 +)))|(% style="width:85px" %)Unix TimeStamp
437 437  
438 -(((
439 -The payload decoder function for TTN is here:
440 -)))
354 +**Interrupt flag & Interrupt level:**
441 441  
442 -(((
443 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
357 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
358 +**Size(bit)**
359 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
360 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
361 +Interrupt flag
444 444  )))
445 445  
446 -
447 -== 2.4 Uplink Interval ==
448 -
449 -
450 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
451 -
452 -
453 -== 2.5 ​Show Data in DataCake IoT Server ==
454 -
455 -
456 -(((
457 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
364 +* (((
365 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
458 458  )))
459 459  
368 +For example, in the US915 band, the max payload for different DR is:
460 460  
461 -(((
462 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
463 -)))
370 +**a) DR0:** max is 11 bytes so one entry of data
464 464  
465 -(((
466 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
467 -)))
372 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
468 468  
374 +**c) DR2:** total payload includes 11 entries of data
469 469  
470 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
376 +**d) DR3:** total payload includes 22 entries of data.
471 471  
378 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
472 472  
473 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
474 474  
381 +**Downlink:**
475 475  
476 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
383 +0x31 64 CC 68 0C 64 CC 69 74 05
477 477  
478 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
385 +[[image:image-20230805144936-2.png||height="113" width="746"]]
479 479  
480 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
387 +**Uplink:**
481 481  
389 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
482 482  
483 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
484 484  
485 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
392 +**Parsed Value:**
486 486  
394 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
487 487  
488 -== 2.6 Datalog Feature ==
489 489  
397 +[360,176,30,High,True,2023-08-04 02:53:00],
490 490  
491 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
399 +[355,168,30,Low,False,2023-08-04 02:53:29],
492 492  
401 +[245,211,30,Low,False,2023-08-04 02:54:29],
493 493  
494 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
403 +[57,700,30,Low,False,2023-08-04 02:55:29],
495 495  
405 +[361,164,30,Low,True,2023-08-04 02:56:00],
496 496  
497 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
407 +[337,184,30,Low,False,2023-08-04 02:56:40],
498 498  
499 -* (((
500 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
501 -)))
502 -* (((
503 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
504 -)))
409 +[20,4458,30,Low,False,2023-08-04 02:57:40],
505 505  
506 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
411 +[362,173,30,Low,False,2023-08-04 02:58:53],
507 507  
508 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
509 509  
414 +**History read from serial port:**
510 510  
511 -=== 2.6.2 Unix TimeStamp ===
416 +[[image:image-20230805145056-3.png]]
512 512  
513 513  
514 -LDS12-LB uses Unix TimeStamp format based on
419 +=== 2.3.4 Decode payload in The Things Network ===
515 515  
516 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
517 517  
518 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
422 +While using TTN network, you can add the payload format to decode the payload.
519 519  
520 -Below is the converter example
424 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
521 521  
522 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
523 523  
524 -
525 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
526 -
527 -
528 -=== 2.6.3 Set Device Time ===
529 -
530 -
531 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
532 -
533 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
534 -
535 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
536 -
537 -
538 -=== 2.6.4 Poll sensor value ===
539 -
540 -
541 -Users can poll sensor values based on timestamps. Below is the downlink command.
542 -
543 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
544 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
545 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
546 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
547 -
548 548  (((
549 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
428 +The payload decoder function for TTN is here:
550 550  )))
551 551  
552 552  (((
553 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
432 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
554 554  )))
555 555  
556 -(((
557 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
558 -)))
559 559  
560 -(((
561 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
562 -)))
436 +== 2.4 ​Show Data in DataCake IoT Server ==
563 563  
564 564  
565 -== 2.7 Frequency Plans ==
566 -
567 -
568 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
569 -
570 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
571 -
572 -
573 -== 2.8 LiDAR ToF Measurement ==
574 -
575 -=== 2.8.1 Principle of Distance Measurement ===
576 -
577 -
578 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
579 -
580 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
581 -
582 -
583 -=== 2.8.2 Distance Measurement Characteristics ===
584 -
585 -
586 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
587 -
588 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
589 -
590 -
591 591  (((
592 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
440 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
593 593  )))
594 594  
595 -(((
596 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
597 -)))
598 598  
599 599  (((
600 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
445 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
601 601  )))
602 602  
603 -
604 604  (((
605 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
449 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
606 606  )))
607 607  
608 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
609 609  
610 -(((
611 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
612 -)))
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
613 613  
614 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
615 615  
616 -(((
617 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
618 -)))
456 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
619 619  
620 620  
621 -=== 2.8.3 Notice of usage ===
459 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
622 622  
461 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
623 623  
624 -Possible invalid /wrong reading for LiDAR ToF tech:
463 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
625 625  
626 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
627 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
628 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
629 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
630 630  
466 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
631 631  
468 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
632 632  
633 -=== 2.8.4  Reflectivity of different objects ===
634 634  
471 +== 2.5 Frequency Plans ==
635 635  
636 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
637 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
638 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
639 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
640 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
641 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
642 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
643 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
644 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
645 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
646 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
647 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
648 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
649 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
650 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
651 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
652 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
653 -Unpolished white metal surface
654 -)))|(% style="width:93px" %)130%
655 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
656 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
657 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
658 658  
474 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
659 659  
476 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
660 660  
661 -= 3. Configure LDS12-LB =
662 662  
479 += 3. Configure DS20L =
480 +
663 663  == 3.1 Configure Methods ==
664 664  
665 665  
666 -LDS12-LB supports below configure method:
484 +DS20L supports below configure method:
667 667  
668 668  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
669 669  
... ... @@ -671,8 +671,6 @@
671 671  
672 672  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
673 673  
674 -
675 -
676 676  == 3.2 General Commands ==
677 677  
678 678  
... ... @@ -687,10 +687,10 @@
687 687  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
688 688  
689 689  
690 -== 3.3 Commands special design for LDS12-LB ==
506 +== 3.3 Commands special design for DS20L ==
691 691  
692 692  
693 -These commands only valid for LDS12-LB, as below:
509 +These commands only valid for DS20L, as below:
694 694  
695 695  
696 696  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -732,18 +732,16 @@
732 732  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
733 733  )))
734 734  * (((
735 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
736 -
737 -
738 -
551 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
739 739  )))
740 740  
554 +
741 741  === 3.3.2 Set Interrupt Mode ===
742 742  
743 743  
744 -Feature, Set Interrupt mode for PA8 of pin.
558 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
745 745  
746 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
560 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
747 747  
748 748  (% style="color:blue" %)**AT Command: AT+INTMOD**
749 749  
... ... @@ -754,7 +754,11 @@
754 754  OK
755 755  the mode is 0 =Disable Interrupt
756 756  )))
757 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
571 +|(% style="width:154px" %)(((
572 +AT+INTMOD=3
573 +
574 +(default)
575 +)))|(% style="width:196px" %)(((
758 758  Set Transmit Interval
759 759  0. (Disable Interrupt),
760 760  ~1. (Trigger by rising and falling edge)
... ... @@ -774,39 +774,76 @@
774 774  
775 775  
776 776  
777 -=== 3.3.3  Set Power Output Duration ===
595 +== 3.3.3 Set work mode ==
778 778  
779 -Control the output duration 3V3 . Before each sampling, device will
780 780  
781 -~1. first enable the power output to external sensor,
598 +Feature: Switch working mode
782 782  
783 -2. keep it on as per duration, read sensor value and construct uplink payload
600 +(% style="color:blue" %)**AT Command: AT+MOD**
784 784  
785 -3. final, close the power output.
602 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
603 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response**
604 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
605 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
606 +OK
786 786  
787 -(% style="color:blue" %)**AT Command: AT+3V3T**
608 +Attention:Take effect after ATZ
609 +)))
788 788  
789 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
790 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
791 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
611 +(% style="color:blue" %)**Downlink Command:**
612 +
613 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
614 +
615 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
616 +
617 +
618 +=== 3.3.4 Set threshold and threshold mode ===
619 +
620 +
621 +Feature, Set threshold and threshold mode
622 +
623 +When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms.
624 +
625 +**AT Command: AT+DOL**
626 +
627 +(% border="1" cellspacing="4" style="width:571.818px" %)
628 +|(% style="width:172px" %)**Command Example**|(% style="width:279px" %)**Function**|(% style="width:118px" %)**Response**
629 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
630 +0,0,0,0,400
631 +
792 792  OK
793 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
794 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
633 +)))
634 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
795 795  
796 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
797 -Format: Command Code (0x07) followed by 3 bytes.
798 798  
799 -The first byte is 01,the second and third bytes are the time to turn on.
637 +(% border="1" cellspacing="4" style="width:668.818px" %)
638 +|(% rowspan="11" style="width:166px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits
639 +|(% style="width:251px" %)1:Use upper and lower limits
640 +|(% style="width:251px" %)2:Less than the lower limit
641 +|(% style="width:251px" %)3:Greater than the lower limit
642 +|(% style="width:251px" %)4:Less than the upper limit
643 +|(% style="width:251px" %)5: Greater than the upper limit
644 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
645 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
646 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
647 +|(% style="width:251px" %)1 Person or object counting statistics
648 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
649 +0~~10000ms
800 800  
801 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
802 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
651 +
652 +)))
803 803  
654 +**Downlink Command: 0x07**
804 804  
656 +Format: Command Code (0x07) followed by 9bytes.
805 805  
658 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
659 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
660 +
806 806  = 4. Battery & Power Consumption =
807 807  
808 808  
809 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
664 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
810 810  
811 811  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
812 812  
... ... @@ -815,7 +815,7 @@
815 815  
816 816  
817 817  (% class="wikigeneratedid" %)
818 -User can change firmware LDS12-LB to:
673 +User can change firmware DS20L to:
819 819  
820 820  * Change Frequency band/ region.
821 821  
... ... @@ -823,7 +823,7 @@
823 823  
824 824  * Fix bugs.
825 825  
826 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
681 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
827 827  
828 828  Methods to Update Firmware:
829 829  
... ... @@ -831,14 +831,12 @@
831 831  
832 832  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
833 833  
834 -
835 -
836 836  = 6. FAQ =
837 837  
838 -== 6.1 What is the frequency plan for LDS12-LB? ==
691 +== 6.1 What is the frequency plan for DS20L? ==
839 839  
840 840  
841 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
694 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
842 842  
843 843  
844 844  = 7. Trouble Shooting =
... ... @@ -873,7 +873,7 @@
873 873  = 8. Order Info =
874 874  
875 875  
876 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
729 +Part Number: (% style="color:blue" %)**DS20L-XXX**
877 877  
878 878  (% style="color:red" %)**XXX**(%%): **The default frequency band**
879 879  
... ... @@ -893,14 +893,12 @@
893 893  
894 894  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
895 895  
896 -
897 -
898 898  = 9. ​Packing Info =
899 899  
900 900  
901 901  (% style="color:#037691" %)**Package Includes**:
902 902  
903 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
754 +* DS20L LoRaWAN Smart Distance Detector x 1
904 904  
905 905  (% style="color:#037691" %)**Dimension and weight**:
906 906  
... ... @@ -912,8 +912,6 @@
912 912  
913 913  * Weight / pcs : g
914 914  
915 -
916 -
917 917  = 10. Support =
918 918  
919 919  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content