Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -35,7 +35,7 @@ 35 35 36 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]38 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,18 +44,19 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 47 +* Liquid Level Measurement by Ultrasonic technology 48 +* Measure through container, No need to contact Liquid 49 +* Valid level range 20mm - 2000mm 50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 51 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 56 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 57 57 58 - 59 59 == 1.3 Specification == 60 60 61 61 ... ... @@ -64,23 +64,6 @@ 64 64 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 65 65 * Operating Temperature: -40 ~~ 85°C 66 66 67 -(% style="color:#037691" %)**Probe Specification:** 68 - 69 -* Storage temperature:-20℃~~75℃ 70 -* Operating temperature : -20℃~~60℃ 71 -* Measure Distance: 72 -** 0.1m ~~ 12m @ 90% Reflectivity 73 -** 0.1m ~~ 4m @ 10% Reflectivity 74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution : 5mm 76 -* Ambient light immunity : 70klux 77 -* Enclosure rating : IP65 78 -* Light source : LED 79 -* Central wavelength : 850nm 80 -* FOV : 3.6° 81 -* Material of enclosure : ABS+PC 82 -* Wire length : 25cm 83 - 84 84 (% style="color:#037691" %)**LoRa Spec:** 85 85 86 86 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -102,23 +102,137 @@ 102 102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 103 103 104 104 89 +== 1.4 Suitable Container & Liquid == 105 105 106 -== 1.4 Applications == 107 107 92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 93 +* Container shape is regular, and surface is smooth. 94 +* Container Thickness: 95 +** Pure metal material. 2~~8mm, best is 3~~5mm 96 +** Pure non metal material: <10 mm 97 +* Pure liquid without irregular deposition. 108 108 109 -* Horizontal distance measurement 110 -* Parking management system 111 -* Object proximity and presence detection 112 -* Intelligent trash can management system 113 -* Robot obstacle avoidance 114 -* Automatic control 115 -* Sewer 116 116 100 +(% style="display:none" %) 117 117 102 +== 1.5 Install LDS12-LB == 118 118 104 + 105 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 106 + 107 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 108 + 109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 110 + 111 + 112 +((( 113 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 114 +))) 115 + 116 +((( 117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 118 +))) 119 + 120 +[[image:image-20230613143052-5.png]] 121 + 122 + 123 +No polish needed if the container is shine metal surface without paint or non-metal container. 124 + 125 +[[image:image-20230613143125-6.png]] 126 + 127 + 128 +((( 129 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 130 +))) 131 + 132 +((( 133 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 134 +))) 135 + 136 +((( 137 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 138 +))) 139 + 140 +((( 141 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 142 +))) 143 + 144 + 145 +((( 146 +(% style="color:blue" %)**LED Status:** 147 +))) 148 + 149 +* ((( 150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 151 +))) 152 + 153 +* ((( 154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 155 +))) 156 +* ((( 157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 158 +))) 159 + 160 +((( 161 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 162 +))) 163 + 164 + 165 +((( 166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 167 +))) 168 + 169 + 170 +((( 171 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 172 +))) 173 + 174 +((( 175 +Prepare Eproxy AB glue. 176 +))) 177 + 178 +((( 179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 180 +))) 181 + 182 +((( 183 +Reset LDS12-LB and see if the BLUE LED is slowly blinking. 184 +))) 185 + 186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 187 + 188 + 189 +((( 190 +(% style="color:red" %)**Note :** 191 + 192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 193 +))) 194 + 195 +((( 196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 197 +))) 198 + 199 + 200 +== 1.6 Applications == 201 + 202 + 203 +* Smart liquid control solution 204 + 205 +* Smart liquefied gas solution 206 + 207 + 208 +== 1.7 Precautions == 209 + 210 + 211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 212 + 213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 214 + 215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 216 + 119 119 (% style="display:none" %) 120 120 121 -== 1. 5Sleep mode and working mode ==219 +== 1.8 Sleep mode and working mode == 122 122 123 123 124 124 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. ... ... @@ -126,7 +126,7 @@ 126 126 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 127 127 128 128 129 -== 1. 6Button & LEDs ==227 +== 1.9 Button & LEDs == 130 130 131 131 132 132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -133,7 +133,7 @@ 133 133 134 134 135 135 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 137 137 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 138 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 139 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -146,10 +146,9 @@ 146 146 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 147 147 148 148 247 +== 1.10 BLE connection == 149 149 150 -== 1.7 BLE connection == 151 151 152 - 153 153 LDS12-LB support BLE remote configure. 154 154 155 155 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -161,12 +161,12 @@ 161 161 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 162 162 163 163 164 -== 1. 8Pin Definitions ==261 +== 1.11 Pin Definitions == 165 165 166 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]263 +[[image:image-20230523174230-1.png]] 167 167 168 168 169 -== 1. 9Mechanical ==266 +== 1.12 Mechanical == 170 170 171 171 172 172 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -180,10 +180,12 @@ 180 180 181 181 (% style="color:blue" %)**Probe Mechanical:** 182 182 280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 183 183 184 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 185 185 283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 186 186 285 + 187 187 = 2. Configure LDS12-LB to connect to LoRaWAN network = 188 188 189 189 == 2.1 How it works == ... ... @@ -200,7 +200,7 @@ 200 200 201 201 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 202 202 203 -[[image:image-2023061 5153004-2.png||height="459" width="800"]](% style="display:none" %)302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 204 204 205 205 206 206 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -244,101 +244,32 @@ 244 244 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 245 245 246 246 247 -== 2.3 Uplink Payload == 346 +== 2.3 Uplink Payload == 248 248 249 -=== 2.3.1 Device Status, FPORT~=5 === 250 250 251 - 252 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 253 - 254 -The Payload format is as below. 255 - 256 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 257 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 258 -**Size(bytes)** 259 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 260 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 261 - 262 -Example parse in TTNv3 263 - 264 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 265 - 266 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 267 - 268 -(% style="color:blue" %)**Frequency Band**: 269 - 270 -0x01: EU868 271 - 272 -0x02: US915 273 - 274 -0x03: IN865 275 - 276 -0x04: AU915 277 - 278 -0x05: KZ865 279 - 280 -0x06: RU864 281 - 282 -0x07: AS923 283 - 284 -0x08: AS923-1 285 - 286 -0x09: AS923-2 287 - 288 -0x0a: AS923-3 289 - 290 -0x0b: CN470 291 - 292 -0x0c: EU433 293 - 294 -0x0d: KR920 295 - 296 -0x0e: MA869 297 - 298 -(% style="color:blue" %)**Sub-Band**: 299 - 300 -AU915 and US915:value 0x00 ~~ 0x08 301 - 302 -CN470: value 0x0B ~~ 0x0C 303 - 304 -Other Bands: Always 0x00 305 - 306 -(% style="color:blue" %)**Battery Info**: 307 - 308 -Check the battery voltage. 309 - 310 -Ex1: 0x0B45 = 2885mV 311 - 312 -Ex2: 0x0B49 = 2889mV 313 - 314 - 315 -=== 2.3.2 Uplink Payload, FPORT~=2 === 316 - 317 - 318 318 ((( 319 319 LDS12-LB will uplink payload via LoRaWAN with below payload format: 320 320 ))) 321 321 322 322 ((( 323 -Uplink payload includes in total 11bytes.354 +Uplink payload includes in total 8 bytes. 324 324 ))) 325 325 326 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)327 -|=(% style="width: 6 0px;background-color:#4F81BD;color:white" %)(((357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 328 328 **Size(bytes)** 329 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 330 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 331 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 332 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 333 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 334 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 335 -[[Message Type>>||anchor="HMessageType"]] 336 -))) 360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 362 +[[Distance>>||anchor="H2.3.2A0Distance"]] 363 +(unit: mm) 364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 337 337 338 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 339 339 340 340 341 -=== =(%style="color:blue" %)**Battery Info**(%%)====371 +=== 2.3.1 Battery Info === 342 342 343 343 344 344 Check the battery voltage for LDS12-LB. ... ... @@ -348,50 +348,29 @@ 348 348 Ex2: 0x0B49 = 2889mV 349 349 350 350 351 -=== =(%style="color:blue"%)**DS18B20 Temperature sensor**(%%)====381 +=== 2.3.2 Distance === 352 352 353 353 354 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 384 +((( 385 +Get the distance. Flat object range 20mm - 2000mm. 386 +))) 355 355 388 +((( 389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 356 356 357 -**Example**: 391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 392 +))) 358 358 359 -If payloadis:0105H: (0105 & FC00==0),temp=0105H /10 = 26.1degree394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 360 360 361 -If payloadis:FF3FH:(FF3F& FC00==1), temp=(FF3FH-65536)/10= -19.3degrees.396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 362 362 363 363 364 -=== =(%style="color:blue"%)**Distance**(%%)====399 +=== 2.3.3 Interrupt Pin === 365 365 366 366 367 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 368 - 369 - 370 -**Example**: 371 - 372 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 373 - 374 - 375 -==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 376 - 377 - 378 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 379 - 380 - 381 -**Example**: 382 - 383 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 384 - 385 -Customers can judge whether they need to adjust the environment based on the signal strength. 386 - 387 - 388 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 389 - 390 - 391 391 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 392 392 393 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 394 - 395 395 **Example:** 396 396 397 397 0x00: Normal uplink packet. ... ... @@ -399,58 +399,51 @@ 399 399 0x01: Interrupt Uplink Packet. 400 400 401 401 402 -=== =(%style="color:blue"%)**LiDAR temp**(%%)====411 +=== 2.3.4 DS18B20 Temperature sensor === 403 403 404 404 405 - Characterizetheinternaltemperature valueofthesensor.414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 406 406 407 -**Example: ** 408 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 409 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 416 +**Example**: 410 410 418 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 411 411 412 - ====(% style="color:blue"%)**MessageType**(%%) ====420 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 413 413 414 414 423 +=== 2.3.5 Sensor Flag === 424 + 425 + 415 415 ((( 416 - Fora normal uplink payload, themessagetypeis always0x01.427 +0x01: Detect Ultrasonic Sensor 417 417 ))) 418 418 419 419 ((( 420 - ValidMessage Type:431 +0x00: No Ultrasonic Sensor 421 421 ))) 422 422 423 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 424 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 425 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 426 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 427 427 435 +=== 2.3.6 Decode payload in The Things Network === 428 428 429 429 430 -=== 2.3.3 Decode payload in The Things Network === 431 - 432 - 433 433 While using TTN network, you can add the payload format to decode the payload. 434 434 435 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 436 436 442 +The payload decoder function for TTN V3 is here: 437 437 438 438 ((( 439 -T hepayloaddecoderfunctionforTTNis here:445 +LDS12-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 440 440 ))) 441 441 442 -((( 443 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 444 -))) 445 445 449 +== 2.4 Uplink Interval == 446 446 447 -== 2.4 Uplink Interval == 448 448 449 - 450 450 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 451 451 452 452 453 -== 2.5 Show Data in DataCake IoT Server == 455 +== 2.5 Show Data in DataCake IoT Server == 454 454 455 455 456 456 ((( ... ... @@ -541,7 +541,7 @@ 541 541 Users can poll sensor values based on timestamps. Below is the downlink command. 542 542 543 543 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 544 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 545 545 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 546 546 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 547 547 ... ... @@ -570,94 +570,6 @@ 570 570 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 571 571 572 572 573 -== 2.8 LiDAR ToF Measurement == 574 - 575 -=== 2.8.1 Principle of Distance Measurement === 576 - 577 - 578 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 579 - 580 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 581 - 582 - 583 -=== 2.8.2 Distance Measurement Characteristics === 584 - 585 - 586 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 587 - 588 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 589 - 590 - 591 -((( 592 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 593 -))) 594 - 595 -((( 596 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 597 -))) 598 - 599 -((( 600 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 601 -))) 602 - 603 - 604 -((( 605 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 606 -))) 607 - 608 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 609 - 610 -((( 611 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 612 -))) 613 - 614 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 615 - 616 -((( 617 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 618 -))) 619 - 620 - 621 -=== 2.8.3 Notice of usage === 622 - 623 - 624 -Possible invalid /wrong reading for LiDAR ToF tech: 625 - 626 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 627 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 628 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 629 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 630 - 631 - 632 - 633 -=== 2.8.4 Reflectivity of different objects === 634 - 635 - 636 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 637 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 638 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 639 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 640 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 641 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 642 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 643 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 644 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 645 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 646 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 647 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 648 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 649 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 650 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 651 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 652 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 653 -Unpolished white metal surface 654 -)))|(% style="width:93px" %)130% 655 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 656 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 657 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 658 - 659 - 660 - 661 661 = 3. Configure LDS12-LB = 662 662 663 663 == 3.1 Configure Methods == ... ... @@ -672,7 +672,6 @@ 672 672 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 673 673 674 674 675 - 676 676 == 3.2 General Commands == 677 677 678 678 ... ... @@ -705,7 +705,7 @@ 705 705 ))) 706 706 707 707 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 708 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 709 709 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 710 710 30000 711 711 OK ... ... @@ -748,7 +748,7 @@ 748 748 (% style="color:blue" %)**AT Command: AT+INTMOD** 749 749 750 750 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 751 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 752 752 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 753 753 0 754 754 OK ... ... @@ -773,36 +773,6 @@ 773 773 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 774 774 775 775 776 - 777 -=== 3.3.3 Set Power Output Duration === 778 - 779 -Control the output duration 3V3 . Before each sampling, device will 780 - 781 -~1. first enable the power output to external sensor, 782 - 783 -2. keep it on as per duration, read sensor value and construct uplink payload 784 - 785 -3. final, close the power output. 786 - 787 -(% style="color:blue" %)**AT Command: AT+3V3T** 788 - 789 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 790 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 791 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 792 -OK 793 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 794 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 795 - 796 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 797 -Format: Command Code (0x07) followed by 3 bytes. 798 - 799 -The first byte is 01,the second and third bytes are the time to turn on. 800 - 801 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 802 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 803 - 804 - 805 - 806 806 = 4. Battery & Power Consumption = 807 807 808 808 ... ... @@ -823,7 +823,7 @@ 823 823 824 824 * Fix bugs. 825 825 826 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 827 827 828 828 Methods to Update Firmware: 829 829 ... ... @@ -832,7 +832,6 @@ 832 832 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 833 833 834 834 835 - 836 836 = 6. FAQ = 837 837 838 838 == 6.1 What is the frequency plan for LDS12-LB? == ... ... @@ -853,11 +853,11 @@ 853 853 854 854 855 855 ((( 856 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance .(such as glass and water, etc.)738 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 857 857 ))) 858 858 859 859 ((( 860 - (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.742 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 861 861 ))) 862 862 863 863 ... ... @@ -866,7 +866,7 @@ 866 866 ))) 867 867 868 868 ((( 869 - (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.751 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 870 870 ))) 871 871 872 872 ... ... @@ -894,7 +894,6 @@ 894 894 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 895 895 896 896 897 - 898 898 = 9. Packing Info = 899 899 900 900 ... ... @@ -913,7 +913,6 @@ 913 913 * Weight / pcs : g 914 914 915 915 916 - 917 917 = 10. Support = 918 918 919 919
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content