Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.6
edited by Xiaoling
on 2023/07/15 15:36
Change comment: There is no comment for this version
To version 80.3
edited by Xiaoling
on 2023/06/14 15:53
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,16 +44,19 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
56 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
59 +
57 57  == 1.3 Specification ==
58 58  
59 59  
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,293 +99,322 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -== 1.4 Applications ==
103 103  
89 +== 1.4 Suitable Container & Liquid ==
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
112 112  
113 -(% style="display:none" %)
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
114 114  
115 -== 1.5 Sleep mode and working mode ==
116 116  
100 +(% style="display:none" %)
117 117  
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
102 +== 1.5 Install DDS20-LB ==
119 119  
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 121  
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
122 122  
123 -== 1.6 Button & LEDs ==
107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
124 124  
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
125 125  
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 127  
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
128 128  
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
134 134  )))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 141  
142 -== 1.7 BLE connection ==
120 +[[image:image-20230613143052-5.png]]
143 143  
144 144  
145 -LDS12-LB support BLE remote configure.
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
146 146  
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
125 +[[image:image-20230613143125-6.png]]
148 148  
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
152 152  
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
154 154  
132 +(((
133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
155 155  
156 -== 1.8 Pin Definitions ==
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
138 +)))
157 157  
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
140 +(((
141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
159 159  
160 160  
161 -== 1.9 Mechanical ==
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
162 162  
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
163 163  
164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
165 165  
160 +(((
161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
166 166  
167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168 168  
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
169 169  
170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171 171  
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
172 172  
173 -(% style="color:blue" %)**Probe Mechanical:**
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
174 174  
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
175 175  
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
182 +(((
183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
184 +)))
177 177  
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
178 178  
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 180  
181 -== 2.1 How it works ==
189 +(((
190 +(% style="color:red" %)**Note :**
182 182  
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
185 185  
186 -(% style="display:none" %) (%%)
187 187  
188 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
200 +== 1.6 Applications ==
189 189  
190 190  
191 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
203 +* Smart liquid control solution
192 192  
193 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
205 +* Smart liquefied gas solution
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
196 196  
208 +== 1.7 Precautions ==
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
201 201  
202 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
203 203  
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
204 204  
205 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
217 +(% style="display:none" %)
206 206  
219 +== 1.8 Sleep mode and working mode ==
207 207  
208 -(% style="color:blue" %)**Register the device**
209 209  
210 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
222 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
211 211  
224 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
212 212  
213 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
214 214  
215 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
227 +== 1.9 Button & LEDs ==
216 216  
217 217  
218 -(% style="color:blue" %)**Add APP EUI in the application**
230 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
219 219  
220 220  
221 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
235 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
236 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
237 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
238 +)))
239 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
240 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
241 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
242 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
243 +)))
244 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
222 222  
223 223  
224 -(% style="color:blue" %)**Add APP KEY**
247 +== 1.10 BLE connection ==
225 225  
226 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227 227  
250 +DDS20-LB support BLE remote configure.
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
252 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
230 230  
254 +* Press button to send an uplink
255 +* Press button to active device.
256 +* Device Power on or reset.
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
258 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
233 233  
234 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235 235  
236 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
261 +== 1.11 Pin Definitions ==
237 237  
263 +[[image:image-20230523174230-1.png]]
238 238  
239 -== 2.3 ​Uplink Payload ==
240 240  
266 +== 1.12 Mechanical ==
241 241  
242 -=== 2.3.1 Device Status, FPORT~=5 ===
243 243  
269 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
244 244  
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
246 246  
247 -The Payload format is as below.
272 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
248 248  
249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
251 -**Size(bytes)**
252 -)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
254 254  
255 -Example parse in TTNv3
275 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
256 256  
257 -**Sensor Model**: For LDS12-LB, this value is 0x24
258 258  
259 -**Firmware Version**: 0x0100, Means: v1.0.0 version
278 +(% style="color:blue" %)**Probe Mechanical:**
260 260  
261 -**Frequency Band**:
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
262 262  
263 -0x01: EU868
264 264  
265 -0x02: US915
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
266 266  
267 -0x03: IN865
268 268  
269 -0x04: AU915
286 += 2. Configure DDS20-LB to connect to LoRaWAN network =
270 270  
271 -0x05: KZ865
288 +== 2.1 How it works ==
272 272  
273 -0x06: RU864
274 274  
275 -0x07: AS923
291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
276 276  
277 -0x08: AS923-1
293 +(% style="display:none" %) (%%)
278 278  
279 -0x09: AS923-2
295 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
280 280  
281 -0x0a: AS923-3
282 282  
283 -0x0b: CN470
298 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
284 284  
285 -0x0c: EU433
300 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
286 286  
287 -0x0d: KR920
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
288 288  
289 -0x0e: MA869
290 290  
291 -**Sub-Band**:
305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
292 292  
293 -AU915 and US915:value 0x00 ~~ 0x08
307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
294 294  
295 -CN470: value 0x0B ~~ 0x0C
309 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
296 296  
297 -Other Bands: Always 0x00
298 298  
299 -**Battery Info**:
312 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
300 300  
301 -Check the battery voltage.
302 302  
303 -Ex1: 0x0B45 = 2885mV
315 +(% style="color:blue" %)**Register the device**
304 304  
305 -Ex2: 0x0B49 = 2889mV
317 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
306 306  
307 307  
308 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
320 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
309 309  
322 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
310 310  
311 -(((
312 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
313 -)))
314 314  
315 -(((
316 -Uplink payload includes in total 11 bytes.
317 -)))
325 +(% style="color:blue" %)**Add APP EUI in the application**
318 318  
319 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
320 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
321 -**Size(bytes)**
322 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
323 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
324 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
325 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
326 -[[Interrupt flag>>||anchor="HInterruptPin26A0InterruptLevel"]]&
327 -[[Interrupt_level||anchor="HInterruptPin26A0InterruptLevel">>]]
328 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
329 -[[Message Type>>||anchor="HMessageType"]]
330 -)))
331 331  
332 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
328 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
333 333  
334 334  
335 -====(% style="color:blue" %)**Battery Info** ====
331 +(% style="color:blue" %)**Add APP KEY**
336 336  
333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
337 337  
338 -Check the battery voltage for LDS12-LB.
339 339  
340 -Ex1: 0x0B45 = 2885mV
336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
341 341  
342 -Ex2: 0x0B49 = 2889mV
343 343  
339 +Press the button for 5 seconds to activate the DDS20-LB.
344 344  
345 -====(% style="color:blue" %)**DS18B20 Temperature sensor** ====
341 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
346 346  
343 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
347 347  
348 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
349 349  
346 +== 2.3  ​Uplink Payload ==
350 350  
351 -**Example**:
352 352  
353 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
349 +(((
350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
351 +)))
354 354  
355 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
353 +(((
354 +Uplink payload includes in total 8 bytes.
355 +)))
356 356  
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
359 +**Size(bytes)**
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
357 357  
358 -====(% style="color:blue" %)**Distance** ====
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
359 359  
360 360  
361 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
371 +=== 2.3.1  Battery Info ===
362 362  
363 363  
364 -**Example**:
374 +Check the battery voltage for DDS20-LB.
365 365  
366 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
376 +Ex1: 0x0B45 = 2885mV
367 367  
378 +Ex2: 0x0B49 = 2889mV
368 368  
369 -====(% style="color:blue" %)**Distance signal strength** ====
370 370  
381 +=== 2.3.2  Distance ===
371 371  
372 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
373 373  
384 +(((
385 +Get the distance. Flat object range 20mm - 2000mm.
386 +)))
374 374  
375 -**Example**:
388 +(((
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
376 376  
377 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
392 +)))
378 378  
379 -Customers can judge whether they need to adjust the environment based on the signal strength.
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
380 380  
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
381 381  
382 -====(% style="color:blue" %)**Interrupt Pin & Interrupt Level** ====
383 383  
399 +=== 2.3.3  Interrupt Pin ===
384 384  
401 +
385 385  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
386 386  
387 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
388 -
389 389  **Example:**
390 390  
391 391  0x00: Normal uplink packet.
... ... @@ -393,60 +393,53 @@
393 393  0x01: Interrupt Uplink Packet.
394 394  
395 395  
396 -====(% style="color:blue" %)**LiDAR temp** ====
411 +=== 2.3.4  DS18B20 Temperature sensor ===
397 397  
398 398  
399 -Characterize the internal temperature value of the sensor.
414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
400 400  
401 -**Example: **
402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
416 +**Example**:
404 404  
418 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
405 405  
406 -====(% style="color:blue" %)**Message Type** ====
420 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
407 407  
408 408  
423 +=== 2.3.5  Sensor Flag ===
424 +
425 +
409 409  (((
410 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
411 411  )))
412 412  
413 413  (((
414 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
415 415  )))
416 416  
417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
421 421  
435 +=== 2.3.6  Decode payload in The Things Network ===
422 422  
423 423  
424 -=== 2.3.3 Decode payload in The Things Network ===
425 -
426 -
427 427  While using TTN network, you can add the payload format to decode the payload.
428 428  
429 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
430 430  
442 +The payload decoder function for TTN V3 is here:
431 431  
432 432  (((
433 -The payload decoder function for TTN is here:
445 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
434 434  )))
435 435  
436 -(((
437 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
438 -)))
439 439  
449 +== 2.4  Uplink Interval ==
440 440  
441 -== 2.4 Uplink Interval ==
442 442  
452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
443 443  
444 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
445 445  
455 +== 2.5  ​Show Data in DataCake IoT Server ==
446 446  
447 -== 2.5 ​Show Data in DataCake IoT Server ==
448 448  
449 -
450 450  (((
451 451  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
452 452  )))
... ... @@ -469,7 +469,7 @@
469 469  
470 470  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
471 471  
472 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
473 473  
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
475 475  
... ... @@ -482,19 +482,19 @@
482 482  == 2.6 Datalog Feature ==
483 483  
484 484  
485 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
486 486  
487 487  
488 488  === 2.6.1 Ways to get datalog via LoRaWAN ===
489 489  
490 490  
491 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
492 492  
493 493  * (((
494 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
495 495  )))
496 496  * (((
497 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
498 498  )))
499 499  
500 500  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -505,7 +505,7 @@
505 505  === 2.6.2 Unix TimeStamp ===
506 506  
507 507  
508 -LDS12-LB uses Unix TimeStamp format based on
516 +DDS20-LB uses Unix TimeStamp format based on
509 509  
510 510  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
511 511  
... ... @@ -524,7 +524,7 @@
524 524  
525 525  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
526 526  
527 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
528 528  
529 529  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
530 530  
... ... @@ -552,7 +552,7 @@
552 552  )))
553 553  
554 554  (((
555 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
556 556  )))
557 557  
558 558  
... ... @@ -559,101 +559,17 @@
559 559  == 2.7 Frequency Plans ==
560 560  
561 561  
562 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
563 563  
564 564  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
565 565  
566 566  
567 -== 2.8 LiDAR ToF Measurement ==
575 += 3. Configure DDS20-LB =
568 568  
569 -=== 2.8.1 Principle of Distance Measurement ===
570 -
571 -
572 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
573 -
574 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
575 -
576 -
577 -=== 2.8.2 Distance Measurement Characteristics ===
578 -
579 -
580 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
581 -
582 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
583 -
584 -
585 -(((
586 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
587 -)))
588 -
589 -(((
590 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
591 -)))
592 -
593 -(((
594 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
595 -)))
596 -
597 -
598 -(((
599 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
600 -)))
601 -
602 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
603 -
604 -(((
605 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
606 -)))
607 -
608 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
609 -
610 -(((
611 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
612 -)))
613 -
614 -
615 -=== 2.8.3 Notice of usage ===
616 -
617 -
618 -Possible invalid /wrong reading for LiDAR ToF tech:
619 -
620 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
621 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
622 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
623 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
624 -
625 -=== 2.8.4  Reflectivity of different objects ===
626 -
627 -
628 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
629 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
630 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
631 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
632 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
633 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
634 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
635 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
636 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
637 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
638 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
639 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
640 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
641 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
642 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
643 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
644 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
645 -Unpolished white metal surface
646 -)))|(% style="width:93px" %)130%
647 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
648 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
649 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
650 -
651 -= 3. Configure LDS12-LB =
652 -
653 653  == 3.1 Configure Methods ==
654 654  
655 655  
656 -LDS12-LB supports below configure method:
580 +DDS20-LB supports below configure method:
657 657  
658 658  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
659 659  
... ... @@ -661,6 +661,7 @@
661 661  
662 662  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
663 663  
588 +
664 664  == 3.2 General Commands ==
665 665  
666 666  
... ... @@ -675,10 +675,10 @@
675 675  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
676 676  
677 677  
678 -== 3.3 Commands special design for LDS12-LB ==
603 +== 3.3 Commands special design for DDS20-LB ==
679 679  
680 680  
681 -These commands only valid for LDS12-LB, as below:
606 +These commands only valid for DDS20-LB, as below:
682 682  
683 683  
684 684  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -693,7 +693,7 @@
693 693  )))
694 694  
695 695  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
696 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
697 697  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
698 698  30000
699 699  OK
... ... @@ -736,7 +736,7 @@
736 736  (% style="color:blue" %)**AT Command: AT+INTMOD**
737 737  
738 738  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
739 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
740 740  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
741 741  0
742 742  OK
... ... @@ -760,37 +760,11 @@
760 760  
761 761  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
762 762  
763 -=== 3.3.3  Set Power Output Duration ===
764 764  
765 -Control the output duration 3V3 . Before each sampling, device will
766 -
767 -~1. first enable the power output to external sensor,
768 -
769 -2. keep it on as per duration, read sensor value and construct uplink payload
770 -
771 -3. final, close the power output.
772 -
773 -(% style="color:blue" %)**AT Command: AT+3V3T**
774 -
775 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
776 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
777 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
778 -OK
779 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
780 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
781 -
782 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
783 -Format: Command Code (0x07) followed by 3 bytes.
784 -
785 -The first byte is 01,the second and third bytes are the time to turn on.
786 -
787 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
788 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
789 -
790 790  = 4. Battery & Power Consumption =
791 791  
792 792  
793 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
794 794  
795 795  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
796 796  
... ... @@ -799,7 +799,7 @@
799 799  
800 800  
801 801  (% class="wikigeneratedid" %)
802 -User can change firmware LDS12-LB to:
701 +User can change firmware DDS20-LB to:
803 803  
804 804  * Change Frequency band/ region.
805 805  
... ... @@ -807,7 +807,7 @@
807 807  
808 808  * Fix bugs.
809 809  
810 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
811 811  
812 812  Methods to Update Firmware:
813 813  
... ... @@ -815,40 +815,42 @@
815 815  
816 816  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
817 817  
717 +
818 818  = 6. FAQ =
819 819  
820 -== 6.1 What is the frequency plan for LDS12-LB? ==
720 +== 6.1  What is the frequency plan for DDS20-LB? ==
821 821  
822 822  
823 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
824 824  
825 825  
826 -= 7Trouble Shooting =
726 +== 6.2  Can I use DDS20-LB in condensation environment? ==
827 827  
828 -== 7.1 AT Command input doesn't work ==
829 829  
729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
830 830  
831 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
832 832  
732 += 7.  Trouble Shooting =
833 833  
834 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
734 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
835 835  
836 836  
837 -(((
838 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
839 -)))
737 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
840 840  
841 -(((
842 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
843 -)))
844 844  
740 +== 7.2  AT Command input doesn't work ==
845 845  
846 -(((
847 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
848 -)))
849 849  
743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
744 +
745 +
746 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
747 +
748 +
850 850  (((
851 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
751 +
752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
852 852  )))
853 853  
854 854  
... ... @@ -855,7 +855,7 @@
855 855  = 8. Order Info =
856 856  
857 857  
858 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
859 859  
860 860  (% style="color:red" %)**XXX**(%%): **The default frequency band**
861 861  
... ... @@ -875,12 +875,13 @@
875 875  
876 876  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
877 877  
779 +
878 878  = 9. ​Packing Info =
879 879  
880 880  
881 881  (% style="color:#037691" %)**Package Includes**:
882 882  
883 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
884 884  
885 885  (% style="color:#037691" %)**Dimension and weight**:
886 886  
... ... @@ -892,6 +892,7 @@
892 892  
893 893  * Weight / pcs : g
894 894  
797 +
895 895  = 10. Support =
896 896  
897 897  
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content