Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.5
edited by Xiaoling
on 2023/07/15 15:32
Change comment: There is no comment for this version
To version 82.14
edited by Xiaoling
on 2023/06/14 17:09
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -158,6 +158,7 @@
158 158  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159 159  
160 160  
161 +
161 161  == 1.9 Mechanical ==
162 162  
163 163  
... ... @@ -173,6 +173,7 @@
173 173  (% style="color:blue" %)**Probe Mechanical:**
174 174  
175 175  
177 +
176 176  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 177  
178 178  
... ... @@ -192,7 +192,7 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
197 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
196 196  
197 197  
198 198  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -239,75 +239,6 @@
239 239  == 2.3 ​Uplink Payload ==
240 240  
241 241  
242 -=== 2.3.1 Device Status, FPORT~=5 ===
243 -
244 -
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
246 -
247 -The Payload format is as below.
248 -
249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
251 -**Size(bytes)**
252 -)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
254 -
255 -Example parse in TTNv3
256 -
257 -**Sensor Model**: For LDS12-LB, this value is 0x24
258 -
259 -**Firmware Version**: 0x0100, Means: v1.0.0 version
260 -
261 -**Frequency Band**:
262 -
263 -0x01: EU868
264 -
265 -0x02: US915
266 -
267 -0x03: IN865
268 -
269 -0x04: AU915
270 -
271 -0x05: KZ865
272 -
273 -0x06: RU864
274 -
275 -0x07: AS923
276 -
277 -0x08: AS923-1
278 -
279 -0x09: AS923-2
280 -
281 -0x0a: AS923-3
282 -
283 -0x0b: CN470
284 -
285 -0x0c: EU433
286 -
287 -0x0d: KR920
288 -
289 -0x0e: MA869
290 -
291 -**Sub-Band**:
292 -
293 -AU915 and US915:value 0x00 ~~ 0x08
294 -
295 -CN470: value 0x0B ~~ 0x0C
296 -
297 -Other Bands: Always 0x00
298 -
299 -**Battery Info**:
300 -
301 -Check the battery voltage.
302 -
303 -Ex1: 0x0B45 = 2885mV
304 -
305 -Ex2: 0x0B49 = 2889mV
306 -
307 -
308 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
309 -
310 -
311 311  (((
312 312  LDS12-LB will uplink payload via LoRaWAN with below payload format: 
313 313  )))
... ... @@ -316,17 +316,16 @@
316 316  Uplink payload includes in total 11 bytes.
317 317  )))
318 318  
319 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
252 +
253 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
320 320  |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
321 321  **Size(bytes)**
322 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
323 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
256 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
257 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
324 324  [[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
325 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)(((
326 -[[Interrupt flag>>]]
327 -[[&>>]]
328 -[[Interrupt_level>>]]
329 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)(((
259 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
260 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
261 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
330 330  [[Message Type>>||anchor="H2.3.7MessageType"]]
331 331  )))
332 332  
... ... @@ -333,7 +333,7 @@
333 333  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
334 334  
335 335  
336 -====(% style="color:blue" %)**Battery Info** ====
268 +=== 2.3.1 Battery Info ===
337 337  
338 338  
339 339  Check the battery voltage for LDS12-LB.
... ... @@ -343,7 +343,7 @@
343 343  Ex2: 0x0B49 = 2889mV
344 344  
345 345  
346 -====(% style="color:blue" %)**DS18B20 Temperature sensor** ====
278 +=== 2.3.2 DS18B20 Temperature sensor ===
347 347  
348 348  
349 349  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -356,7 +356,7 @@
356 356  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
357 357  
358 358  
359 -====(% style="color:blue" %)**Distance** ====
291 +=== 2.3.3 Distance ===
360 360  
361 361  
362 362  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -367,7 +367,7 @@
367 367  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
368 368  
369 369  
370 -====(% style="color:blue" %)**Distance signal strength** ====
302 +=== 2.3.4 Distance signal strength ===
371 371  
372 372  
373 373  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -380,7 +380,7 @@
380 380  Customers can judge whether they need to adjust the environment based on the signal strength.
381 381  
382 382  
383 -====(% style="color:blue" %)**Interrupt Pin & Interrupt Level** ====
315 +=== 2.3.5 Interrupt Pin ===
384 384  
385 385  
386 386  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
... ... @@ -394,7 +394,7 @@
394 394  0x01: Interrupt Uplink Packet.
395 395  
396 396  
397 -====(% style="color:blue" %)**LiDAR temp** ====
329 +=== 2.3.6 LiDAR temp ===
398 398  
399 399  
400 400  Characterize the internal temperature value of the sensor.
... ... @@ -404,7 +404,7 @@
404 404  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
405 405  
406 406  
407 -====(% style="color:blue" %)**Message Type** ====
339 +=== 2.3.7 Message Type ===
408 408  
409 409  
410 410  (((
... ... @@ -422,7 +422,7 @@
422 422  
423 423  
424 424  
425 -=== 2.3.3 Decode payload in The Things Network ===
357 +=== 2.3.8 Decode payload in The Things Network ===
426 426  
427 427  
428 428  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -572,15 +572,16 @@
572 572  
573 573  The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
574 574  
575 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
576 576  
508 +[[image:1654831757579-263.png]]
577 577  
510 +
578 578  === 2.8.2 Distance Measurement Characteristics ===
579 579  
580 580  
581 581  With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
582 582  
583 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
516 +[[image:1654831774373-275.png]]
584 584  
585 585  
586 586  (((
... ... @@ -600,20 +600,23 @@
600 600  Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
601 601  )))
602 602  
603 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
604 604  
537 +[[image:1654831797521-720.png]]
538 +
539 +
605 605  (((
606 606  In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
607 607  )))
608 608  
609 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
544 +[[image:1654831810009-716.png]]
610 610  
546 +
611 611  (((
612 612  If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
613 613  )))
614 614  
615 615  
616 -=== 2.8.3 Notice of usage ===
552 +=== 2.8.3 Notice of usage: ===
617 617  
618 618  
619 619  Possible invalid /wrong reading for LiDAR ToF tech:
... ... @@ -627,7 +627,7 @@
627 627  
628 628  
629 629  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
630 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
566 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
631 631  |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
632 632  |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
633 633  |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
... ... @@ -694,7 +694,7 @@
694 694  )))
695 695  
696 696  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
697 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
633 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
698 698  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
699 699  30000
700 700  OK
... ... @@ -722,9 +722,6 @@
722 722  )))
723 723  * (((
724 724  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
725 -
726 -
727 -
728 728  )))
729 729  
730 730  === 3.3.2 Set Interrupt Mode ===
... ... @@ -737,7 +737,7 @@
737 737  (% style="color:blue" %)**AT Command: AT+INTMOD**
738 738  
739 739  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
740 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
673 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
741 741  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
742 742  0
743 743  OK
... ... @@ -761,33 +761,86 @@
761 761  
762 762  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
763 763  
764 -=== 3.3.3  Set Power Output Duration ===
765 765  
766 -Control the output duration 3V3 . Before each sampling, device will
698 +=== 3.3.3 Get Firmware Version Info ===
767 767  
768 -~1. first enable the power output to external sensor,
769 769  
770 -2. keep it on as per duration, read sensor value and construct uplink payload
701 +Feature: use downlink to get firmware version.
771 771  
772 -3. final, close the power output.
703 +(% style="color:#037691" %)**Downlink Command: 0x26**
773 773  
774 -(% style="color:blue" %)**AT Command: AT+3V3T**
705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
706 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
707 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
775 775  
776 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
779 -OK
780 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
709 +* Reply to the confirmation package: 26 01
710 +* Reply to non-confirmed packet: 26 00
782 782  
783 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 -Format: Command Code (0x07) followed by 3 bytes.
712 +Device will send an uplink after got this downlink command. With below payload:
785 785  
786 -The first byte is 01,the second and third bytes are the time to turn on.
714 +Configures info payload:
787 787  
788 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
716 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
717 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
718 +**Size(bytes)**
719 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
720 +|**Value**|Software Type|(((
721 +Frequency
722 +Band
723 +)))|Sub-band|(((
724 +Firmware
725 +Version
726 +)))|Sensor Type|Reserve|(((
727 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
728 +Always 0x02
729 +)))
790 790  
731 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
732 +
733 +(% style="color:#037691" %)**Frequency Band**:
734 +
735 +*0x01: EU868
736 +
737 +*0x02: US915
738 +
739 +*0x03: IN865
740 +
741 +*0x04: AU915
742 +
743 +*0x05: KZ865
744 +
745 +*0x06: RU864
746 +
747 +*0x07: AS923
748 +
749 +*0x08: AS923-1
750 +
751 +*0x09: AS923-2
752 +
753 +*0xa0: AS923-3
754 +
755 +
756 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
757 +
758 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
759 +
760 +(% style="color:#037691" %)**Sensor Type**:
761 +
762 +0x01: LSE01
763 +
764 +0x02: LDDS75
765 +
766 +0x03: LDDS20
767 +
768 +0x04: LLMS01
769 +
770 +0x05: LSPH01
771 +
772 +0x06: LSNPK01
773 +
774 +0x07: LLDS12
775 +
776 +
791 791  = 4. Battery & Power Consumption =
792 792  
793 793  
... ... @@ -808,7 +808,7 @@
808 808  
809 809  * Fix bugs.
810 810  
811 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
797 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
812 812  
813 813  Methods to Update Firmware:
814 814  
... ... @@ -836,11 +836,11 @@
836 836  
837 837  
838 838  (((
839 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
825 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
840 840  )))
841 841  
842 842  (((
843 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
829 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
844 844  )))
845 845  
846 846  
... ... @@ -849,7 +849,7 @@
849 849  )))
850 850  
851 851  (((
852 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
838 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
853 853  )))
854 854  
855 855  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content