Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.5
edited by Xiaoling
on 2023/07/15 15:32
Change comment: There is no comment for this version
To version 79.3
edited by Xiaoling
on 2023/06/13 14:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,24 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,14 +44,16 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
48 +* Liquid Level Measurement by Ultrasonic technology
49 +* Measure through container, No need to contact Liquid
50 +* Valid level range 20mm - 2000mm
51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  == 1.3 Specification ==
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,294 +99,331 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -== 1.4 Applications ==
88 +== 1.4 Suitable Container & Liquid ==
103 103  
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
91 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
92 +* Container shape is regular, and surface is smooth.
93 +* Container Thickness:
94 +** Pure metal material.  2~~8mm, best is 3~~5mm
95 +** Pure non metal material: <10 mm
96 +* Pure liquid without irregular deposition.(% style="display:none" %)
112 112  
113 -(% style="display:none" %)
114 114  
115 -== 1.5 Sleep mode and working mode ==
99 +== 1.5 Install DDS20-LB ==
116 116  
117 117  
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
102 +(% style="color:blue" %)**Step 1**(%%) Choose the installation point.
119 119  
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
104 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
121 121  
106 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
122 122  
123 -== 1.6 Button & LEDs ==
124 124  
109 +(((
110 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
111 +)))
125 125  
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
113 +(((
114 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
115 +)))
127 127  
117 +[[image:image-20230613143052-5.png]]
128 128  
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 -)))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 141  
142 -== 1.7 BLE connection ==
120 +No polish needed if the container is shine metal surface without paint or non-metal container.
143 143  
122 +[[image:image-20230613143125-6.png]]
144 144  
145 -LDS12-LB support BLE remote configure.
146 146  
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
125 +(((
126 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
127 +)))
148 148  
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
129 +(((
130 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
131 +)))
152 152  
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 154  
134 +(((
135 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
136 +)))
155 155  
156 -== 1.8 Pin Definitions ==
138 +[[image:1655256160324-178.png||height="151" width="419"]][[image:image-20220615092327-13.png||height="146" width="260"]]
157 157  
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159 159  
141 +(((
142 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
143 +)))
160 160  
161 -== 1.9 Mechanical ==
162 162  
146 +(((
147 +(% style="color:red" %)**LED Status:**
148 +)))
163 163  
164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
150 +* (((
151 +Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
152 +)))
165 165  
154 +* (((
155 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
156 +)))
157 +* (((
158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
159 +)))
166 166  
167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
161 +(((
162 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
163 +)))
168 168  
169 169  
170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
166 +(((
167 +(% style="color:red" %)**Note 2:**
168 +)))
171 171  
170 +(((
171 +(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
172 +)))
172 172  
173 -(% style="color:blue" %)**Probe Mechanical:**
174 174  
175 +(((
176 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
177 +)))
175 175  
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
179 +(((
180 +Prepare Eproxy AB glue.
181 +)))
177 177  
183 +(((
184 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
185 +)))
178 178  
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
187 +(((
188 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
189 +)))
180 180  
181 -== 2.1 How it works ==
191 +[[image:image-20220615091045-8.png||height="203" width="341"]] [[image:image-20220615091045-9.png||height="200" width="284"]]
182 182  
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
194 +(((
195 +(% style="color:red" %)**Note 1:**
196 +)))
185 185  
186 -(% style="display:none" %) (%%)
198 +(((
199 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
200 +)))
187 187  
188 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
189 189  
203 +(((
204 +(% style="color:red" %)**Note 2:**
205 +)))
190 190  
191 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
207 +(((
208 +(% style="color:red" %)**Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
209 +)))
192 192  
193 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
212 +== 1.6 Applications ==
196 196  
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
215 +* Smart liquid control solution.
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
217 +* Smart liquefied gas solution.
201 201  
202 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203 203  
204 204  
205 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
221 +== 1.7 Precautions ==
206 206  
207 207  
208 -(% style="color:blue" %)**Register the device**
224 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
209 209  
210 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
226 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
211 211  
228 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
212 212  
213 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
214 214  
215 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
231 +== 1.8 Sleep mode and working mode ==
216 216  
217 217  
218 -(% style="color:blue" %)**Add APP EUI in the application**
234 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
219 219  
236 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
220 220  
221 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
222 222  
239 +== 1.9 Button & LEDs ==
223 223  
224 -(% style="color:blue" %)**Add APP KEY**
225 225  
226 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
242 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
227 227  
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
245 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
247 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
248 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
249 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
250 +)))
251 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
252 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
253 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
255 +)))
256 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
230 230  
258 +== 1.10 BLE connection ==
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
233 233  
234 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
261 +DDS20-LB support BLE remote configure.
235 235  
236 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
263 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
237 237  
265 +* Press button to send an uplink
266 +* Press button to active device.
267 +* Device Power on or reset.
238 238  
239 -== 2.3 ​Uplink Payload ==
269 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
240 240  
241 241  
242 -=== 2.3.1 Device Status, FPORT~=5 ===
272 +== 1.11 Pin Definitions ==
243 243  
274 +[[image:image-20230523174230-1.png]]
244 244  
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
246 246  
247 -The Payload format is as below.
277 +== 1.12 Mechanical ==
248 248  
249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
251 -**Size(bytes)**
252 -)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
254 254  
255 -Example parse in TTNv3
280 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
256 256  
257 -**Sensor Model**: For LDS12-LB, this value is 0x24
258 258  
259 -**Firmware Version**: 0x0100, Means: v1.0.0 version
283 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
260 260  
261 -**Frequency Band**:
262 262  
263 -0x01: EU868
286 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
264 264  
265 -0x02: US915
266 266  
267 -0x03: IN865
289 +(% style="color:blue" %)**Probe Mechanical:**
268 268  
269 -0x04: AU915
291 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
270 270  
271 -0x05: KZ865
272 272  
273 -0x06: RU864
294 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
274 274  
275 -0x07: AS923
276 276  
277 -0x08: AS923-1
297 += 2. Configure DDS20-LB to connect to LoRaWAN network =
278 278  
279 -0x09: AS923-2
299 +== 2.1 How it works ==
280 280  
281 -0x0a: AS923-3
282 282  
283 -0x0b: CN470
302 +The DDS45-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
284 284  
285 -0x0c: EU433
304 +(% style="display:none" %) (%%)
286 286  
287 -0x0d: KR920
306 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
288 288  
289 -0x0e: MA869
290 290  
291 -**Sub-Band**:
309 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
292 292  
293 -AU915 and US915:value 0x00 ~~ 0x08
311 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
294 294  
295 -CN470: value 0x0B ~~ 0x0C
313 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
296 296  
297 -Other Bands: Always 0x00
298 298  
299 -**Battery Info**:
316 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS45-LB.
300 300  
301 -Check the battery voltage.
318 +Each DDS45-LB is shipped with a sticker with the default device EUI as below:
302 302  
303 -Ex1: 0x0B45 = 2885mV
320 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
304 304  
305 -Ex2: 0x0B49 = 2889mV
306 306  
323 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
307 307  
308 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
309 309  
326 +(% style="color:blue" %)**Register the device**
310 310  
311 -(((
312 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
313 -)))
328 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
314 314  
315 -(((
316 -Uplink payload includes in total 11 bytes.
317 -)))
318 318  
319 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
320 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
321 -**Size(bytes)**
322 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
323 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
324 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
325 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)(((
326 -[[Interrupt flag>>]]
327 -[[&>>]]
328 -[[Interrupt_level>>]]
329 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)(((
330 -[[Message Type>>||anchor="H2.3.7MessageType"]]
331 -)))
331 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
332 332  
333 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
334 334  
335 335  
336 -====(% style="color:blue" %)**Battery Info** ====
336 +(% style="color:blue" %)**Add APP EUI in the application**
337 337  
338 338  
339 -Check the battery voltage for LDS12-LB.
339 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
340 340  
341 -Ex1: 0x0B45 = 2885mV
342 342  
343 -Ex2: 0x0B49 = 2889mV
342 +(% style="color:blue" %)**Add APP KEY**
344 344  
344 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
345 345  
346 -====(% style="color:blue" %)**DS18B20 Temperature sensor** ====
347 347  
347 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS45-LB
348 348  
349 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
350 350  
350 +Press the button for 5 seconds to activate the DDS45-LB.
351 351  
352 -**Example**:
352 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
353 353  
354 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
354 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
355 355  
356 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
357 357  
357 +== 2.3  ​Uplink Payload ==
358 358  
359 -====(% style="color:blue" %)**Distance** ====
360 360  
360 +(((
361 +DDS45-LB will uplink payload via LoRaWAN with below payload format: 
362 +)))
361 361  
362 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
364 +(((
365 +Uplink payload includes in total 8 bytes.
366 +)))
363 363  
368 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
369 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
370 +**Size(bytes)**
371 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
372 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
373 +[[Distance>>||anchor="H2.3.2A0Distance"]]
374 +(unit: mm)
375 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
376 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
377 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
364 364  
365 -**Example**:
379 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
366 366  
367 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
368 368  
382 +=== 2.3.1  Battery Info ===
369 369  
370 -====(% style="color:blue" %)**Distance signal strength** ====
371 371  
385 +Check the battery voltage for DDS45-LB.
372 372  
373 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
387 +Ex1: 0x0B45 = 2885mV
374 374  
389 +Ex2: 0x0B49 = 2889mV
375 375  
376 -**Example**:
377 377  
378 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
392 +=== 2.3.2  Distance ===
379 379  
380 -Customers can judge whether they need to adjust the environment based on the signal strength.
381 381  
395 +(((
396 +Get the distance. Flat object range 30mm - 4500mm.
397 +)))
382 382  
383 -====(% style="color:blue" %)**Interrupt Pin & Interrupt Level** ====
399 +(((
400 +For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
384 384  
402 +(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.**
403 +)))
385 385  
386 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
405 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
406 +* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00.
387 387  
388 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
408 +=== 2.3.3  Interrupt Pin ===
389 389  
410 +
411 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
412 +
390 390  **Example:**
391 391  
392 392  0x00: Normal uplink packet.
... ... @@ -394,60 +394,53 @@
394 394  0x01: Interrupt Uplink Packet.
395 395  
396 396  
397 -====(% style="color:blue" %)**LiDAR temp** ====
420 +=== 2.3.4  DS18B20 Temperature sensor ===
398 398  
399 399  
400 -Characterize the internal temperature value of the sensor.
423 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
401 401  
402 -**Example: **
403 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
404 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
425 +**Example**:
405 405  
427 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
406 406  
407 -====(% style="color:blue" %)**Message Type** ====
429 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
408 408  
409 409  
432 +=== 2.3.5  Sensor Flag ===
433 +
434 +
410 410  (((
411 -For a normal uplink payload, the message type is always 0x01.
436 +0x01: Detect Ultrasonic Sensor
412 412  )))
413 413  
414 414  (((
415 -Valid Message Type:
440 +0x00: No Ultrasonic Sensor
416 416  )))
417 417  
418 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
419 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
420 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
421 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
422 422  
444 +=== 2.3.6  Decode payload in The Things Network ===
423 423  
424 424  
425 -=== 2.3.3 Decode payload in The Things Network ===
426 -
427 -
428 428  While using TTN network, you can add the payload format to decode the payload.
429 429  
430 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
431 431  
451 +The payload decoder function for TTN V3 is here:
432 432  
433 433  (((
434 -The payload decoder function for TTN is here:
454 +DDS45-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
435 435  )))
436 436  
437 -(((
438 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
439 -)))
440 440  
458 +== 2.4  Uplink Interval ==
441 441  
442 -== 2.4 Uplink Interval ==
443 443  
461 +The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
444 444  
445 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
446 446  
464 +== 2.5  ​Show Data in DataCake IoT Server ==
447 447  
448 -== 2.5 ​Show Data in DataCake IoT Server ==
449 449  
450 -
451 451  (((
452 452  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
453 453  )))
... ... @@ -470,7 +470,7 @@
470 470  
471 471  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
472 472  
473 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
489 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS45-LB and add DevEUI.**
474 474  
475 475  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
476 476  
... ... @@ -480,22 +480,23 @@
480 480  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
481 481  
482 482  
499 +
483 483  == 2.6 Datalog Feature ==
484 484  
485 485  
486 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
503 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS45-LB will store the reading for future retrieving purposes.
487 487  
488 488  
489 489  === 2.6.1 Ways to get datalog via LoRaWAN ===
490 490  
491 491  
492 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
509 +Set PNACKMD=1, DDS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
493 493  
494 494  * (((
495 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
512 +a) DDS45-LB will do an ACK check for data records sending to make sure every data arrive server.
496 496  )))
497 497  * (((
498 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
515 +b) DDS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.
499 499  )))
500 500  
501 501  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -506,7 +506,7 @@
506 506  === 2.6.2 Unix TimeStamp ===
507 507  
508 508  
509 -LDS12-LB uses Unix TimeStamp format based on
526 +DDS45-LB uses Unix TimeStamp format based on
510 510  
511 511  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
512 512  
... ... @@ -525,7 +525,7 @@
525 525  
526 526  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
527 527  
528 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
545 +Once DDS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
529 529  
530 530  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
531 531  
... ... @@ -553,7 +553,7 @@
553 553  )))
554 554  
555 555  (((
556 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
573 +Uplink Internal =5s,means DDS45-LB will send one packet every 5s. range 5~~255s.
557 557  )))
558 558  
559 559  
... ... @@ -560,101 +560,17 @@
560 560  == 2.7 Frequency Plans ==
561 561  
562 562  
563 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
580 +The DDS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
564 564  
565 565  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
566 566  
567 567  
568 -== 2.8 LiDAR ToF Measurement ==
585 += 3. Configure DDS45-LB =
569 569  
570 -=== 2.8.1 Principle of Distance Measurement ===
571 -
572 -
573 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
574 -
575 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
576 -
577 -
578 -=== 2.8.2 Distance Measurement Characteristics ===
579 -
580 -
581 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
582 -
583 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
584 -
585 -
586 -(((
587 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
588 -)))
589 -
590 -(((
591 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
592 -)))
593 -
594 -(((
595 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
596 -)))
597 -
598 -
599 -(((
600 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
601 -)))
602 -
603 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
604 -
605 -(((
606 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
607 -)))
608 -
609 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
610 -
611 -(((
612 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
613 -)))
614 -
615 -
616 -=== 2.8.3 Notice of usage ===
617 -
618 -
619 -Possible invalid /wrong reading for LiDAR ToF tech:
620 -
621 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
622 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
623 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
624 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
625 -
626 -=== 2.8.4  Reflectivity of different objects ===
627 -
628 -
629 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
630 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
631 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
632 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
633 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
634 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
635 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
636 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
637 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
638 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
639 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
640 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
641 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
642 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
643 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
644 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
645 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
646 -Unpolished white metal surface
647 -)))|(% style="width:93px" %)130%
648 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
649 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
650 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
651 -
652 -= 3. Configure LDS12-LB =
653 -
654 654  == 3.1 Configure Methods ==
655 655  
656 656  
657 -LDS12-LB supports below configure method:
590 +DDS45-LB supports below configure method:
658 658  
659 659  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
660 660  
... ... @@ -676,10 +676,10 @@
676 676  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
677 677  
678 678  
679 -== 3.3 Commands special design for LDS12-LB ==
612 +== 3.3 Commands special design for DDS45-LB ==
680 680  
681 681  
682 -These commands only valid for LDS12-LB, as below:
615 +These commands only valid for DDS45-LB, as below:
683 683  
684 684  
685 685  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -694,7 +694,7 @@
694 694  )))
695 695  
696 696  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
697 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
630 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
698 698  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
699 699  30000
700 700  OK
... ... @@ -722,9 +722,6 @@
722 722  )))
723 723  * (((
724 724  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
725 -
726 -
727 -
728 728  )))
729 729  
730 730  === 3.3.2 Set Interrupt Mode ===
... ... @@ -737,7 +737,7 @@
737 737  (% style="color:blue" %)**AT Command: AT+INTMOD**
738 738  
739 739  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
740 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
670 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
741 741  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
742 742  0
743 743  OK
... ... @@ -761,37 +761,10 @@
761 761  
762 762  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
763 763  
764 -=== 3.3.3  Set Power Output Duration ===
765 -
766 -Control the output duration 3V3 . Before each sampling, device will
767 -
768 -~1. first enable the power output to external sensor,
769 -
770 -2. keep it on as per duration, read sensor value and construct uplink payload
771 -
772 -3. final, close the power output.
773 -
774 -(% style="color:blue" %)**AT Command: AT+3V3T**
775 -
776 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
779 -OK
780 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
782 -
783 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 -Format: Command Code (0x07) followed by 3 bytes.
785 -
786 -The first byte is 01,the second and third bytes are the time to turn on.
787 -
788 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
790 -
791 791  = 4. Battery & Power Consumption =
792 792  
793 793  
794 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
697 +DDS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
795 795  
796 796  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
797 797  
... ... @@ -800,7 +800,7 @@
800 800  
801 801  
802 802  (% class="wikigeneratedid" %)
803 -User can change firmware LDS12-LB to:
706 +User can change firmware DDS45-LB to:
804 804  
805 805  * Change Frequency band/ region.
806 806  
... ... @@ -808,55 +808,77 @@
808 808  
809 809  * Fix bugs.
810 810  
811 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
714 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**
812 812  
813 813  Methods to Update Firmware:
814 814  
815 -* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
718 +* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
816 816  
817 817  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
818 818  
819 819  = 6. FAQ =
820 820  
821 -== 6.1 What is the frequency plan for LDS12-LB? ==
724 +== 6.1  What is the frequency plan for DDS45-LB? ==
822 822  
823 823  
824 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
727 +DDS45-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
825 825  
826 826  
827 -= 7Trouble Shooting =
730 +== 6.2  Can I use DDS45-LB in condensation environment? ==
828 828  
829 -== 7.1 AT Command input doesn't work ==
830 830  
733 +DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0.
831 831  
735 +
736 += 7.  Trouble Shooting =
737 +
738 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
739 +
740 +
741 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
742 +
743 +
744 +== 7.2  AT Command input doesn't work ==
745 +
746 +
832 832  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
833 833  
834 834  
835 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
750 +== 7.3  Why does the sensor reading show 0 or "No sensor" ==
836 836  
837 837  
838 -(((
839 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
840 -)))
753 +~1. The measurement object is very close to the sensor, but in the blind spot of the sensor.
841 841  
842 -(((
843 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
844 -)))
755 +2. Sensor wiring is disconnected
845 845  
757 +3. Not using the correct decoder
846 846  
847 -(((
848 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
849 -)))
850 850  
851 -(((
852 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
853 -)))
760 +== 7.4  Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large ==
854 854  
855 855  
763 +1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.)
764 +
765 +2) Does it change with temperature, temperature will affect its measurement
766 +
767 +3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode.
768 +
769 +downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1**
770 +
771 +4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis
772 +
773 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]]
774 +
775 +
776 +Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data.
777 +
778 +Please send the data to us for check.
779 +
780 +
856 856  = 8. Order Info =
857 857  
858 858  
859 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
784 +Part Number: (% style="color:blue" %)**DDS45-LB-XXX**
860 860  
861 861  (% style="color:red" %)**XXX**(%%): **The default frequency band**
862 862  
... ... @@ -881,7 +881,7 @@
881 881  
882 882  (% style="color:#037691" %)**Package Includes**:
883 883  
884 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
809 +* DDS45-LB LoRaWAN Distance Detection Sensor x 1
885 885  
886 886  (% style="color:#037691" %)**Dimension and weight**:
887 887  
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content