Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -35,7 +35,7 @@ 35 35 36 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]38 +[[image:image-20230614162334-2.png||height="468" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -99,28 +99,143 @@ 99 99 * Sleep Mode: 5uA @ 3.3v 100 100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 101 102 -== 1.4 Applications==102 +== 1.4 Suitable Container & Liquid == 103 103 104 104 105 -* Horizontal distance measurement 106 -* Parking management system 107 -* Object proximity and presence detection 108 -* Intelligent trash can management system 109 -* Robot obstacle avoidance 110 -* Automatic control 111 -* Sewer 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 112 112 113 113 (% style="display:none" %) 114 114 115 -== 1.5 S leepmode and working mode==114 +== 1.5 Install LDS12-LB == 116 116 117 117 117 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 118 + 119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 120 + 121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 122 + 123 + 124 +((( 125 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 126 +))) 127 + 128 +((( 129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 130 +))) 131 + 132 +[[image:image-20230613143052-5.png]] 133 + 134 + 135 +No polish needed if the container is shine metal surface without paint or non-metal container. 136 + 137 +[[image:image-20230613143125-6.png]] 138 + 139 + 140 +((( 141 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 142 +))) 143 + 144 +((( 145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 146 +))) 147 + 148 +((( 149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 150 +))) 151 + 152 +((( 153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 154 +))) 155 + 156 + 157 +((( 158 +(% style="color:blue" %)**LED Status:** 159 +))) 160 + 161 +* ((( 162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 163 +))) 164 + 165 +* ((( 166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 167 +))) 168 +* ((( 169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 170 +))) 171 + 172 +((( 173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 174 +))) 175 + 176 + 177 +((( 178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 179 +))) 180 + 181 + 182 +((( 183 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 184 +))) 185 + 186 +((( 187 +Prepare Eproxy AB glue. 188 +))) 189 + 190 +((( 191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 192 +))) 193 + 194 +((( 195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking. 196 +))) 197 + 198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 199 + 200 + 201 +((( 202 +(% style="color:red" %)**Note :** 203 + 204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 205 +))) 206 + 207 +((( 208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 209 +))) 210 + 211 + 212 +== 1.6 Applications == 213 + 214 + 215 +* Smart liquid control solution 216 + 217 +* Smart liquefied gas solution 218 + 219 +== 1.7 Precautions == 220 + 221 + 222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 223 + 224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 225 + 226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 227 + 228 +(% style="display:none" %) 229 + 230 +== 1.8 Sleep mode and working mode == 231 + 232 + 118 118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 119 119 120 120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 121 121 122 122 123 -== 1. 6Button & LEDs ==238 +== 1.9 Button & LEDs == 124 124 125 125 126 126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -139,7 +139,7 @@ 139 139 ))) 140 140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 141 142 -== 1. 7BLE connection ==257 +== 1.10 BLE connection == 143 143 144 144 145 145 LDS12-LB support BLE remote configure. ... ... @@ -153,12 +153,12 @@ 153 153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 154 154 155 155 156 -== 1. 8Pin Definitions ==271 +== 1.11 Pin Definitions == 157 157 158 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]273 +[[image:image-20230523174230-1.png]] 159 159 160 160 161 -== 1. 9Mechanical ==276 +== 1.12 Mechanical == 162 162 163 163 164 164 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -173,6 +173,7 @@ 173 173 (% style="color:blue" %)**Probe Mechanical:** 174 174 175 175 291 + 176 176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 177 177 178 178 ... ... @@ -192,7 +192,7 @@ 192 192 193 193 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 194 194 195 -[[image:image-2023061 5153004-2.png||height="459" width="800"]](% style="display:none" %)311 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %) 196 196 197 197 198 198 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -236,104 +236,32 @@ 236 236 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 237 237 238 238 239 -== 2.3 Uplink Payload == 355 +== 2.3 Uplink Payload == 240 240 241 241 242 -=== 2.3.1 Device Status, FPORT~=5 === 243 - 244 - 245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 246 - 247 -The Payload format is as below. 248 - 249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 250 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 251 -**Size(bytes)** 252 -)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2** 253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 254 - 255 -Example parse in TTNv3 256 - 257 -**Sensor Model**: For LDS12-LB, this value is 0x24 258 - 259 -**Firmware Version**: 0x0100, Means: v1.0.0 version 260 - 261 -**Frequency Band**: 262 - 263 -0x01: EU868 264 - 265 -0x02: US915 266 - 267 -0x03: IN865 268 - 269 -0x04: AU915 270 - 271 -0x05: KZ865 272 - 273 -0x06: RU864 274 - 275 -0x07: AS923 276 - 277 -0x08: AS923-1 278 - 279 -0x09: AS923-2 280 - 281 -0x0a: AS923-3 282 - 283 -0x0b: CN470 284 - 285 -0x0c: EU433 286 - 287 -0x0d: KR920 288 - 289 -0x0e: MA869 290 - 291 -**Sub-Band**: 292 - 293 -AU915 and US915:value 0x00 ~~ 0x08 294 - 295 -CN470: value 0x0B ~~ 0x0C 296 - 297 -Other Bands: Always 0x00 298 - 299 -**Battery Info**: 300 - 301 -Check the battery voltage. 302 - 303 -Ex1: 0x0B45 = 2885mV 304 - 305 -Ex2: 0x0B49 = 2889mV 306 - 307 - 308 -=== 2.3.2 Uplink Payload, FPORT~=2 === 309 - 310 - 311 311 ((( 312 312 LDS12-LB will uplink payload via LoRaWAN with below payload format: 313 313 ))) 314 314 315 315 ((( 316 -Uplink payload includes in total 11bytes.363 +Uplink payload includes in total 8 bytes. 317 317 ))) 318 318 319 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:670px" %)320 -|=(% style="width: 62.5px;background-color:# 4F81BD;color:white" %)(((366 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 367 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 321 321 **Size(bytes)** 322 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1** 323 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 324 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 325 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)((( 326 -[[Interrupt flag>>]] 327 -[[&>>]] 328 -[[Interrupt_level>>]] 329 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)((( 330 -[[Message Type>>||anchor="H2.3.7MessageType"]] 331 -))) 369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 371 +[[Distance>>||anchor="H2.3.2A0Distance"]] 372 +(unit: mm) 373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 332 332 333 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 334 334 335 335 336 -=== =(%style="color:blue" %)**Battery Info**====380 +=== 2.3.1 Battery Info === 337 337 338 338 339 339 Check the battery voltage for LDS12-LB. ... ... @@ -343,50 +343,28 @@ 343 343 Ex2: 0x0B49 = 2889mV 344 344 345 345 346 -=== =(%style="color:blue"%)**DS18B20 Temperature sensor**====390 +=== 2.3.2 Distance === 347 347 348 348 349 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 393 +((( 394 +Get the distance. Flat object range 20mm - 2000mm. 395 +))) 350 350 397 +((( 398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 351 351 352 -**Example**: 400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 401 +))) 353 353 354 -If payloadis:0105H: (0105 & FC00==0),temp=0105H /10 = 26.1degree403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 355 355 356 -If payloadis:FF3FH:(FF3F& FC00==1), temp=(FF3FH-65536)/10= -19.3degrees.405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 357 357 407 +=== 2.3.3 Interrupt Pin === 358 358 359 -==== (% style="color:blue" %)**Distance** ==== 360 360 361 - 362 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 363 - 364 - 365 -**Example**: 366 - 367 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 368 - 369 - 370 -====(% style="color:blue" %) **Distance signal strength** ==== 371 - 372 - 373 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 374 - 375 - 376 -**Example**: 377 - 378 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 379 - 380 -Customers can judge whether they need to adjust the environment based on the signal strength. 381 - 382 - 383 -====(% style="color:blue" %) **Interrupt Pin & Interrupt Level** ==== 384 - 385 - 386 386 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 387 387 388 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 389 - 390 390 **Example:** 391 391 392 392 0x00: Normal uplink packet. ... ... @@ -394,58 +394,51 @@ 394 394 0x01: Interrupt Uplink Packet. 395 395 396 396 397 -=== =(%style="color:blue"%)**LiDAR temp**====419 +=== 2.3.4 DS18B20 Temperature sensor === 398 398 399 399 400 - Characterizetheinternaltemperature valueofthesensor.422 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 401 401 402 -**Example: ** 403 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 404 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 424 +**Example**: 405 405 426 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 406 406 407 -== ==(%style="color:blue"%)**MessageType** ====428 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 408 408 409 409 431 +=== 2.3.5 Sensor Flag === 432 + 433 + 410 410 ((( 411 - Fora normal uplink payload, themessagetypeis always0x01.435 +0x01: Detect Ultrasonic Sensor 412 412 ))) 413 413 414 414 ((( 415 - ValidMessage Type:439 +0x00: No Ultrasonic Sensor 416 416 ))) 417 417 418 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 419 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 420 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 421 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 422 422 443 +=== 2.3.6 Decode payload in The Things Network === 423 423 424 424 425 -=== 2.3.3 Decode payload in The Things Network === 426 - 427 - 428 428 While using TTN network, you can add the payload format to decode the payload. 429 429 430 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 431 431 450 +The payload decoder function for TTN V3 is here: 432 432 433 433 ((( 434 -T hepayloaddecoderfunctionforTTNis here:453 +LDS12-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 435 435 ))) 436 436 437 -((( 438 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 439 -))) 440 440 457 +== 2.4 Uplink Interval == 441 441 442 -== 2.4 Uplink Interval == 443 443 444 - 445 445 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 446 446 447 447 448 -== 2.5 Show Data in DataCake IoT Server == 463 +== 2.5 Show Data in DataCake IoT Server == 449 449 450 450 451 451 ((( ... ... @@ -565,90 +565,6 @@ 565 565 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 566 566 567 567 568 -== 2.8 LiDAR ToF Measurement == 569 - 570 -=== 2.8.1 Principle of Distance Measurement === 571 - 572 - 573 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 574 - 575 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 576 - 577 - 578 -=== 2.8.2 Distance Measurement Characteristics === 579 - 580 - 581 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 582 - 583 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 584 - 585 - 586 -((( 587 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 588 -))) 589 - 590 -((( 591 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 592 -))) 593 - 594 -((( 595 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 596 -))) 597 - 598 - 599 -((( 600 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 601 -))) 602 - 603 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 604 - 605 -((( 606 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 607 -))) 608 - 609 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 610 - 611 -((( 612 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 613 -))) 614 - 615 - 616 -=== 2.8.3 Notice of usage === 617 - 618 - 619 -Possible invalid /wrong reading for LiDAR ToF tech: 620 - 621 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 622 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 623 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 624 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 625 - 626 -=== 2.8.4 Reflectivity of different objects === 627 - 628 - 629 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 630 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 631 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 632 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 633 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 634 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 635 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 636 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 637 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 638 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 639 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 640 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 641 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 642 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 643 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 644 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 645 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 646 -Unpolished white metal surface 647 -)))|(% style="width:93px" %)130% 648 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 649 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 650 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 651 - 652 652 = 3. Configure LDS12-LB = 653 653 654 654 == 3.1 Configure Methods == ... ... @@ -694,7 +694,7 @@ 694 694 ))) 695 695 696 696 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 697 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**628 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 698 698 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 699 699 30000 700 700 OK ... ... @@ -737,7 +737,7 @@ 737 737 (% style="color:blue" %)**AT Command: AT+INTMOD** 738 738 739 739 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 740 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**671 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 741 741 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 742 742 0 743 743 OK ... ... @@ -761,33 +761,6 @@ 761 761 762 762 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 763 763 764 -=== 3.3.3 Set Power Output Duration === 765 - 766 -Control the output duration 3V3 . Before each sampling, device will 767 - 768 -~1. first enable the power output to external sensor, 769 - 770 -2. keep it on as per duration, read sensor value and construct uplink payload 771 - 772 -3. final, close the power output. 773 - 774 -(% style="color:blue" %)**AT Command: AT+3V3T** 775 - 776 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 777 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 778 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 779 -OK 780 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 781 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 782 - 783 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 784 -Format: Command Code (0x07) followed by 3 bytes. 785 - 786 -The first byte is 01,the second and third bytes are the time to turn on. 787 - 788 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 789 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 790 - 791 791 = 4. Battery & Power Consumption = 792 792 793 793 ... ... @@ -808,7 +808,7 @@ 808 808 809 809 * Fix bugs. 810 810 811 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**715 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 812 812 813 813 Methods to Update Firmware: 814 814 ... ... @@ -836,11 +836,11 @@ 836 836 837 837 838 838 ((( 839 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance .(such as glass and water, etc.)743 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 840 840 ))) 841 841 842 842 ((( 843 - (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.747 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 844 844 ))) 845 845 846 846 ... ... @@ -849,7 +849,7 @@ 849 849 ))) 850 850 851 851 ((( 852 - (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.756 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 853 853 ))) 854 854 855 855
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content