Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDS12-LB --LoRaWAN1 +LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 4153353-1.png]]2 +[[image:image-20230613133716-2.png||height="717" width="717"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,24 +18,24 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 22 22 23 23 24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWANLiDAR ToF (Timeof Flight) DistanceSensor**(%%) for Internet of Things solution. Itis capable to measure thedistancetoanobject as closeas 10 centimeters(+/- 5cm up to6m)andasfar as 12 meters(+/-1% startingat6m)!. TheLiDAR probeuseslaserinductiontechnologyfordistancemeasurement.25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server. 25 25 26 -The LDS12-LBcan be applied toscenariossuch as horizontal distancemeasurement, parkingmanagementsystem,objectproximityandpresencedetection,intelligent trashcan management system,robotobstacle avoidance,automaticcontrol,sewer,etc.27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 27 27 28 - Itdetects the distancebetweenemeasured object andthe sensor,anduploadsthevalueviawireless toLoRaWAN IoT Server.29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 29 29 30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 31 32 - LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 - LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]39 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,16 +44,20 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 48 +* Liquid Level Measurement by Ultrasonic technology 49 +* Measure through container, No need to contact Liquid 50 +* Valid level range 20mm - 2000mm 51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 57 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 60 + 61 + 57 57 == 1.3 Specification == 58 58 59 59 ... ... @@ -62,23 +62,6 @@ 62 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 63 * Operating Temperature: -40 ~~ 85°C 64 64 65 -(% style="color:#037691" %)**Probe Specification:** 66 - 67 -* Storage temperature:-20℃~~75℃ 68 -* Operating temperature : -20℃~~60℃ 69 -* Measure Distance: 70 -** 0.1m ~~ 12m @ 90% Reflectivity 71 -** 0.1m ~~ 4m @ 10% Reflectivity 72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution : 5mm 74 -* Ambient light immunity : 70klux 75 -* Enclosure rating : IP65 76 -* Light source : LED 77 -* Central wavelength : 850nm 78 -* FOV : 3.6° 79 -* Material of enclosure : ABS+PC 80 -* Wire length : 25cm 81 - 82 82 (% style="color:#037691" %)**LoRa Spec:** 83 83 84 84 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -99,296 +99,328 @@ 99 99 * Sleep Mode: 5uA @ 3.3v 100 100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 101 102 -== 1.4 Applications == 103 103 104 104 105 -* Horizontal distance measurement 106 -* Parking management system 107 -* Object proximity and presence detection 108 -* Intelligent trash can management system 109 -* Robot obstacle avoidance 110 -* Automatic control 111 -* Sewer 92 +== 1.4 Suitable Container & Liquid == 112 112 113 -(% style="display:none" %) 114 114 115 -== 1.5 Sleep mode and working mode == 95 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 96 +* Container shape is regular, and surface is smooth. 97 +* Container Thickness: 98 +** Pure metal material. 2~~8mm, best is 3~~5mm 99 +** Pure non metal material: <10 mm 100 +* Pure liquid without irregular deposition. 116 116 117 117 118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 119 119 120 -(% style=" color:blue" %)**Working Mode:** (%%)In thismode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be inIDLE mode),in IDLE mode, sensor has the same power consumption as Deep Sleep mode.104 +(% style="display:none" %) 121 121 106 +== 1.5 Install DDS20-LB == 122 122 123 -== 1.6 Button & LEDs == 124 124 109 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 125 125 126 - [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]111 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 127 127 113 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 128 128 129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 115 + 116 +((( 117 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 134 134 ))) 135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 119 + 120 +((( 121 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 139 139 ))) 140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 141 142 - ==1.7 BLE connection ==124 +[[image:image-20230613143052-5.png]] 143 143 144 144 145 - LDS12-LBsupportBLEremote configure.127 +No polish needed if the container is shine metal surface without paint or non-metal container. 146 146 147 - BLE can beused to configuretheparameter of sensor or see the console output from sensor. BLE will be only activate on below case:129 +[[image:image-20230613143125-6.png]] 148 148 149 -* Press button to send an uplink 150 -* Press button to active device. 151 -* Device Power on or reset. 152 152 153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 132 +((( 133 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 134 +))) 154 154 136 +((( 137 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 138 +))) 155 155 156 -== 1.8 Pin Definitions == 140 +((( 141 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 142 +))) 157 157 158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 144 +((( 145 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 146 +))) 159 159 160 160 161 -== 1.9 Mechanical == 149 +((( 150 +(% style="color:blue" %)**LED Status:** 151 +))) 162 162 153 +* ((( 154 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 155 +))) 163 163 164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 157 +* ((( 158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 159 +))) 160 +* ((( 161 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 162 +))) 165 165 164 +((( 165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 +))) 166 166 167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 168 168 169 +((( 170 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 171 +))) 169 169 170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 171 171 174 +((( 175 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 176 +))) 172 172 173 -(% style="color:blue" %)**Probe Mechanical:** 178 +((( 179 +Prepare Eproxy AB glue. 180 +))) 174 174 182 +((( 183 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 184 +))) 175 175 176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 186 +((( 187 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 188 +))) 177 177 190 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 178 178 179 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 180 180 181 -== 2.1 How it works == 193 +((( 194 +(% style="color:red" %)**Note :** 182 182 196 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 197 +))) 183 183 184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 199 +((( 200 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 201 +))) 185 185 186 -(% style="display:none" %) (%%) 187 187 188 -== 2.2Quick guidetoconnect to LoRaWANserver(OTAA)==204 +== 1.6 Applications == 189 189 190 190 191 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Belowis the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]asa LoRaWAN gatewayinthis example.207 +* Smart liquid control solution 192 192 193 - TheLPS8v2 isalready setto connectedto[[TTN network >>url:https://console.cloud.thethings.network/]], so what weneed to now is configure the TTN server.209 +* Smart liquefied gas solution 194 194 195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 196 196 197 197 198 - (% style="color:blue"%)**Step1:**(%%)Create a device inTTN with the OTAA keysfrom LDS12-LB.213 +== 1.7 Precautions == 199 199 200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below: 201 201 202 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]216 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 203 203 218 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 204 204 205 - Youcanenterthiskeyin theLoRaWANServerportal.BelowisTTNscreenshot:220 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 206 206 207 207 208 -(% style=" color:blue" %)**Registerthe device**223 +(% style="display:none" %) 209 209 210 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]225 +== 1.8 Sleep mode and working mode == 211 211 212 212 213 -(% style="color:blue" %)** Add APPEUIandDEVEUI**228 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 214 214 215 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]230 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 216 216 217 217 218 - (% style="color:blue"%)**AddAPP EUI inthe application**233 +== 1.9 Button & LEDs == 219 219 220 220 221 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]236 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 222 222 223 223 224 -(% style="color:blue" %)**Add APP KEY** 239 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 240 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 241 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 242 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 243 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 244 +))) 245 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 246 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 247 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 248 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 249 +))) 250 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 225 225 226 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 227 227 228 228 229 - (% style="color:blue"%)**Step2:**(%%)ActivateonLDS12-LB254 +== 1.10 BLE connection == 230 230 231 231 232 - Pressthe button for5secondstoactivatethe LDS12-LB.257 +DDS20-LB support BLE remote configure. 233 233 234 - (%style="color:green"%)**Greenled**(%%)will fastblink 5 times,devicewillenter(%style="color:blue"%)**OTA mode**(%%) for3seconds.Andthenstart toJOIN LoRaWAN network.(%style="color:green"%)**Greenled**(%%)willsolidlyturn on for 5 secondsafterjoinedin network.259 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 235 235 236 -After join success, it will start to upload messages to TTN and you can see the messages in the panel. 261 +* Press button to send an uplink 262 +* Press button to active device. 263 +* Device Power on or reset. 237 237 265 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 238 238 239 -== 2.3 Uplink Payload == 240 240 268 +== 1.11 Pin Definitions == 241 241 242 - === 2.3.1 DeviceStatus, FPORT~=5===270 +[[image:image-20230523174230-1.png]] 243 243 244 244 245 - Userscan use the downlink command(**0x26 01**) to ask LDS12-LBto send device configure detail, include device configure status. LDS12-LB willuplink a payload via FPort=5 to server.273 +== 1.12 Mechanical == 246 246 247 -The Payload format is as below. 248 248 249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 250 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 251 -**Size(bytes)** 252 -)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2** 253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 276 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 254 254 255 -Example parse in TTNv3 256 256 257 - **Sensor Model**:For LDS12-LB,thisvalueis 0x24279 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 258 258 259 -**Firmware Version**: 0x0100, Means: v1.0.0 version 260 260 261 - **FrequencyBand**:282 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 262 262 263 -0x01: EU868 264 264 265 - 0x02:US915285 +(% style="color:blue" %)**Probe Mechanical:** 266 266 267 - 0x03: IN865287 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 268 268 269 -0x04: AU915 270 270 271 - 0x05: KZ865290 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 272 272 273 -0x06: RU864 274 274 275 - 0x07:AS923293 += 2. Configure DDS20-LB to connect to LoRaWAN network = 276 276 277 - 0x08:AS923-1295 +== 2.1 How it works == 278 278 279 -0x09: AS923-2 280 280 281 -0 x0a: AS923-3298 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 282 282 283 - 0x0b:CN470300 +(% style="display:none" %) (%%) 284 284 285 - 0x0c:EU433302 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 286 286 287 -0x0d: KR920 288 288 289 - 0x0e:MA869305 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 290 290 291 - **Sub-Band**:307 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 292 292 293 - AU915and US915:valuex00~~0x08309 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 294 294 295 -CN470: value 0x0B ~~ 0x0C 296 296 297 - OtherBands:Always 0x00312 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 298 298 299 - **BatteryInfo**:314 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 300 300 301 - Check the battery voltage.316 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 302 302 303 -Ex1: 0x0B45 = 2885mV 304 304 305 - Ex2:0x0B49=2889mV319 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 306 306 307 307 308 - ===2.3.2 Uplink Payload,FPORT~=2===322 +(% style="color:blue" %)**Register the device** 309 309 324 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 310 310 311 -((( 312 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 313 -))) 314 314 315 -((( 316 -Uplink payload includes in total 11 bytes. 317 -))) 327 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 318 318 319 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %) 320 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 321 -**Size(bytes)** 322 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1** 323 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 324 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 325 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)((( 326 -[[Interrupt flag>>]] 329 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 327 327 328 -[[&>>]] 329 329 330 -[[Interrupt_level>>]] 331 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)((( 332 -[[Message Type>>||anchor="H2.3.7MessageType"]] 333 -))) 332 +(% style="color:blue" %)**Add APP EUI in the application** 334 334 335 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 336 336 335 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 337 337 338 -==== 2.3.2.a Battery Info ==== 339 339 338 +(% style="color:blue" %)**Add APP KEY** 340 340 341 - Check the battery voltageDS12-LB.340 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 342 342 343 -Ex1: 0x0B45 = 2885mV 344 344 345 - Ex2:0x0B49=2889mV343 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 346 346 347 347 348 - ====2.3.2.bDS18B20 Temperaturesensor====346 +Press the button for 5 seconds to activate the DDS20-LB. 349 349 348 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 350 350 351 - Thisisoptional,usercanconnectexternalDS18B20sensortothe+3.3v, 1-wireandGNDpin .andthisfieldwillreporttemperature.350 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 352 352 353 353 354 - **Example**:353 +== 2.3 Uplink Payload == 355 355 356 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 357 357 358 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 356 +((( 357 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 358 +))) 359 359 360 +((( 361 +Uplink payload includes in total 8 bytes. 362 +))) 360 360 361 -==== 2.3.2.c Distance ==== 364 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 365 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 366 +**Size(bytes)** 367 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 368 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 369 +[[Distance>>||anchor="H2.3.2A0Distance"]] 370 +(unit: mm) 371 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 372 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 373 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 362 362 375 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 363 363 364 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 365 365 378 +=== 2.3.1 Battery Info === 366 366 367 -**Example**: 368 368 369 - If thedata you get from theregister is 0x0B 0xEA, the distancebetweenthesensorandthe measuredobjectis 0BEA(H) = 3050 (D)/10= 305cm.381 +Check the battery voltage for DDS20-LB. 370 370 383 +Ex1: 0x0B45 = 2885mV 371 371 372 - ====2.3.2.dDistancesignal strength====385 +Ex2: 0x0B49 = 2889mV 373 373 374 374 375 - Refersto the signal strength, the default output value will be between 0-65535.When the distancemeasurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.388 +=== 2.3.2 Distance === 376 376 377 377 378 -**Example**: 391 +((( 392 +Get the distance. Flat object range 20mm - 2000mm. 393 +))) 379 379 380 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 395 +((( 396 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 381 381 382 -Customers can judge whether they need to adjust the environment based on the signal strength. 398 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 399 +))) 383 383 401 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 384 384 385 - ====2.3.2.eInterruptPin& InterruptLevel====403 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 386 386 387 387 388 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 389 389 390 - Note:TheInternet Pin is a separatepin inthescrew terminal.See [[pin mapping>>||anchor="H1.8PinDefinitions"]].407 +=== 2.3.3 Interrupt Pin === 391 391 409 + 410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 411 + 392 392 **Example:** 393 393 394 394 0x00: Normal uplink packet. ... ... @@ -396,58 +396,53 @@ 396 396 0x01: Interrupt Uplink Packet. 397 397 398 398 399 -=== =2.3.2.fLiDARtemp ====419 +=== 2.3.4 DS18B20 Temperature sensor === 400 400 401 401 402 - Characterizetheinternaltemperature valueofthesensor.422 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 403 403 404 -**Example: ** 405 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 406 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 424 +**Example**: 407 407 426 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 408 408 409 -==== 2.3.2.gMessageType====428 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 410 410 411 411 431 +=== 2.3.5 Sensor Flag === 432 + 433 + 412 412 ((( 413 - Fora normal uplink payload, themessagetypeis always0x01.435 +0x01: Detect Ultrasonic Sensor 414 414 ))) 415 415 416 416 ((( 417 - ValidMessage Type:439 +0x00: No Ultrasonic Sensor 418 418 ))) 419 419 420 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 421 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 422 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 423 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 424 424 425 -=== 2.3. 3Decode payload in The Things Network ===443 +=== 2.3.6 Decode payload in The Things Network === 426 426 427 427 428 428 While using TTN network, you can add the payload format to decode the payload. 429 429 430 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 431 431 450 +The payload decoder function for TTN V3 is here: 432 432 433 433 ((( 434 -T hepayloaddecoderfunctionforTTNis here:453 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 435 435 ))) 436 436 437 -((( 438 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 439 -))) 440 440 457 +== 2.4 Uplink Interval == 441 441 442 -== 2.4 Uplink Interval == 443 443 460 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 444 444 445 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 446 446 463 +== 2.5 Show Data in DataCake IoT Server == 447 447 448 -== 2.5 Show Data in DataCake IoT Server == 449 449 450 - 451 451 ((( 452 452 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 453 453 ))) ... ... @@ -470,7 +470,7 @@ 470 470 471 471 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 472 472 473 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**488 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 474 474 475 475 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 476 476 ... ... @@ -483,19 +483,19 @@ 483 483 == 2.6 Datalog Feature == 484 484 485 485 486 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.501 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 487 487 488 488 489 489 === 2.6.1 Ways to get datalog via LoRaWAN === 490 490 491 491 492 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.507 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 493 493 494 494 * ((( 495 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.510 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 496 496 ))) 497 497 * ((( 498 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.513 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 499 499 ))) 500 500 501 501 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -506,7 +506,7 @@ 506 506 === 2.6.2 Unix TimeStamp === 507 507 508 508 509 - LDS12-LB uses Unix TimeStamp format based on524 +DDS20-LB uses Unix TimeStamp format based on 510 510 511 511 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 512 512 ... ... @@ -525,7 +525,7 @@ 525 525 526 526 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 527 527 528 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).543 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 529 529 530 530 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 531 531 ... ... @@ -553,7 +553,7 @@ 553 553 ))) 554 554 555 555 ((( 556 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.571 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 557 557 ))) 558 558 559 559 ... ... @@ -560,101 +560,17 @@ 560 560 == 2.7 Frequency Plans == 561 561 562 562 563 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.578 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 564 564 565 565 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 566 566 567 567 568 -= =2.8LiDAR ToF Measurement==583 += 3. Configure DDS20-LB = 569 569 570 -=== 2.8.1 Principle of Distance Measurement === 571 - 572 - 573 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 574 - 575 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 576 - 577 - 578 -=== 2.8.2 Distance Measurement Characteristics === 579 - 580 - 581 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 582 - 583 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 584 - 585 - 586 -((( 587 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 588 -))) 589 - 590 -((( 591 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 592 -))) 593 - 594 -((( 595 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 596 -))) 597 - 598 - 599 -((( 600 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 601 -))) 602 - 603 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 604 - 605 -((( 606 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 607 -))) 608 - 609 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 610 - 611 -((( 612 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 613 -))) 614 - 615 - 616 -=== 2.8.3 Notice of usage === 617 - 618 - 619 -Possible invalid /wrong reading for LiDAR ToF tech: 620 - 621 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 622 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 623 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 624 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 625 - 626 -=== 2.8.4 Reflectivity of different objects === 627 - 628 - 629 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 630 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 631 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 632 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 633 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 634 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 635 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 636 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 637 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 638 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 639 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 640 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 641 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 642 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 643 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 644 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 645 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 646 -Unpolished white metal surface 647 -)))|(% style="width:93px" %)130% 648 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 649 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 650 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 651 - 652 -= 3. Configure LDS12-LB = 653 - 654 654 == 3.1 Configure Methods == 655 655 656 656 657 - LDS12-LB supports below configure method:588 +DDS20-LB supports below configure method: 658 658 659 659 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 660 660 ... ... @@ -662,6 +662,8 @@ 662 662 663 663 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 664 664 596 + 597 + 665 665 == 3.2 General Commands == 666 666 667 667 ... ... @@ -676,10 +676,10 @@ 676 676 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 677 677 678 678 679 -== 3.3 Commands special design for LDS12-LB ==612 +== 3.3 Commands special design for DDS20-LB == 680 680 681 681 682 -These commands only valid for LDS12-LB, as below:615 +These commands only valid for DDS20-LB, as below: 683 683 684 684 685 685 === 3.3.1 Set Transmit Interval Time === ... ... @@ -694,7 +694,7 @@ 694 694 ))) 695 695 696 696 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 697 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**630 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 698 698 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 699 699 30000 700 700 OK ... ... @@ -737,7 +737,7 @@ 737 737 (% style="color:blue" %)**AT Command: AT+INTMOD** 738 738 739 739 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 740 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**673 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 741 741 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 742 742 0 743 743 OK ... ... @@ -761,37 +761,12 @@ 761 761 762 762 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 763 763 764 -=== 3.3.3 Set Power Output Duration === 765 765 766 -Control the output duration 3V3 . Before each sampling, device will 767 767 768 -~1. first enable the power output to external sensor, 769 - 770 -2. keep it on as per duration, read sensor value and construct uplink payload 771 - 772 -3. final, close the power output. 773 - 774 -(% style="color:blue" %)**AT Command: AT+3V3T** 775 - 776 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 777 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 778 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 779 -OK 780 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 781 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 782 - 783 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 784 -Format: Command Code (0x07) followed by 3 bytes. 785 - 786 -The first byte is 01,the second and third bytes are the time to turn on. 787 - 788 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 789 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 790 - 791 791 = 4. Battery & Power Consumption = 792 792 793 793 794 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.702 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 795 795 796 796 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 797 797 ... ... @@ -800,7 +800,7 @@ 800 800 801 801 802 802 (% class="wikigeneratedid" %) 803 -User can change firmware LDS12-LB to:711 +User can change firmware DDS20-LB to: 804 804 805 805 * Change Frequency band/ region. 806 806 ... ... @@ -808,7 +808,7 @@ 808 808 809 809 * Fix bugs. 810 810 811 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**719 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 812 812 813 813 Methods to Update Firmware: 814 814 ... ... @@ -816,40 +816,43 @@ 816 816 817 817 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 818 818 727 + 728 + 819 819 = 6. FAQ = 820 820 821 -== 6.1 What is the frequency plan for LDS12-LB? ==731 +== 6.1 What is the frequency plan for DDS20-LB? == 822 822 823 823 824 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]734 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 825 825 826 826 827 -= 7.Trouble Shooting=737 +== 6.2 Can I use DDS20-LB in condensation environment? == 828 828 829 -== 7.1 AT Command input doesn't work == 830 830 740 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 831 831 832 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 833 833 743 += 7. Trouble Shooting = 834 834 835 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==745 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 836 836 837 837 838 -((( 839 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 840 -))) 748 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 841 841 842 -((( 843 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 844 -))) 845 845 751 +== 7.2 AT Command input doesn't work == 846 846 847 -((( 848 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 849 -))) 850 850 754 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 755 + 756 + 757 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 758 + 759 + 851 851 ((( 852 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 761 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 762 + 763 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 853 853 ))) 854 854 855 855 ... ... @@ -856,7 +856,7 @@ 856 856 = 8. Order Info = 857 857 858 858 859 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**770 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 860 860 861 861 (% style="color:red" %)**XXX**(%%): **The default frequency band** 862 862 ... ... @@ -876,12 +876,14 @@ 876 876 877 877 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 878 878 790 + 791 + 879 879 = 9. Packing Info = 880 880 881 881 882 882 (% style="color:#037691" %)**Package Includes**: 883 883 884 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1797 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 885 885 886 886 (% style="color:#037691" %)**Dimension and weight**: 887 887 ... ... @@ -893,6 +893,8 @@ 893 893 894 894 * Weight / pcs : g 895 895 809 + 810 + 896 896 = 10. Support = 897 897 898 898
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content