Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.19
edited by Xiaoling
on 2023/07/15 15:54
Change comment: There is no comment for this version
To version 79.20
edited by Xiaoling
on 2023/06/14 15:26
Change comment: Update document after refactoring.

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,24 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,14 +44,16 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
48 +* Liquid Level Measurement by Ultrasonic technology
49 +* Measure through container, No need to contact Liquid
50 +* Valid level range 20mm - 2000mm
51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  
... ... @@ -64,23 +64,6 @@
64 64  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 65  * Operating Temperature: -40 ~~ 85°C
66 66  
67 -(% style="color:#037691" %)**Probe Specification:**
68 -
69 -* Storage temperature:-20℃~~75℃
70 -* Operating temperature : -20℃~~60℃
71 -* Measure Distance:
72 -** 0.1m ~~ 12m @ 90% Reflectivity
73 -** 0.1m ~~ 4m @ 10% Reflectivity
74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution : 5mm
76 -* Ambient light immunity : 70klux
77 -* Enclosure rating : IP65
78 -* Light source : LED
79 -* Central wavelength : 850nm
80 -* FOV : 3.6°
81 -* Material of enclosure : ABS+PC
82 -* Wire length : 25cm
83 -
84 84  (% style="color:#037691" %)**LoRa Spec:**
85 85  
86 86  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -103,295 +103,326 @@
103 103  
104 104  
105 105  
106 -== 1.4 Applications ==
92 +== 1.4 Suitable Container & Liquid ==
107 107  
108 108  
109 -* Horizontal distance measurement
110 -* Parking management system
111 -* Object proximity and presence detection
112 -* Intelligent trash can management system
113 -* Robot obstacle avoidance
114 -* Automatic control
115 -* Sewer
95 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
96 +* Container shape is regular, and surface is smooth.
97 +* Container Thickness:
98 +** Pure metal material.  2~~8mm, best is 3~~5mm
99 +** Pure non metal material: <10 mm
100 +* Pure liquid without irregular deposition.
116 116  
117 117  
118 118  
119 119  (% style="display:none" %)
120 120  
121 -== 1.5 Sleep mode and working mode ==
106 +== 1.5 Install DDS20-LB ==
122 122  
123 123  
124 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
109 +(% style="color:blue" %)**Step 1**(%%) ** Choose the installation point.**
125 125  
126 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
111 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
127 127  
113 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
128 128  
129 -== 1.6 Button & LEDs ==
130 130  
116 +(((
117 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
118 +)))
131 131  
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
120 +(((
121 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
122 +)))
133 133  
124 +[[image:image-20230613143052-5.png]]
134 134  
135 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
137 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 -)))
141 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 -)))
146 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 147  
127 +No polish needed if the container is shine metal surface without paint or non-metal container.
148 148  
129 +[[image:image-20230613143125-6.png]]
149 149  
150 -== 1.7 BLE connection ==
151 151  
132 +(((
133 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
134 +)))
152 152  
153 -LDS12-LB support BLE remote configure.
136 +(((
137 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
138 +)))
154 154  
155 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
140 +(((
141 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
142 +)))
156 156  
157 -* Press button to send an uplink
158 -* Press button to active device.
159 -* Device Power on or reset.
144 +(((
145 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
146 +)))
160 160  
161 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162 162  
149 +(((
150 +(% style="color:blue" %)**LED Status:**
151 +)))
163 163  
164 -== 1.8 Pin Definitions ==
153 +* (((
154 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
155 +)))
165 165  
166 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
157 +* (((
158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
159 +)))
160 +* (((
161 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
162 +)))
167 167  
164 +(((
165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
166 +)))
168 168  
169 -== 1.9 Mechanical ==
170 170  
169 +(((
170 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
171 +)))
171 171  
172 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
173 173  
174 +(((
175 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
176 +)))
174 174  
175 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
178 +(((
179 +Prepare Eproxy AB glue.
180 +)))
176 176  
182 +(((
183 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
184 +)))
177 177  
178 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
186 +(((
187 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
188 +)))
179 179  
190 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
180 180  
181 -(% style="color:blue" %)**Probe Mechanical:**
182 182  
193 +(((
194 +(% style="color:red" %)**Note :**
183 183  
184 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
196 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
197 +)))
185 185  
199 +(((
200 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
201 +)))
186 186  
187 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
188 188  
189 -== 2.1 How it works ==
204 +== 1.6 Applications ==
190 190  
191 191  
192 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
207 +* Smart liquid control solution
193 193  
194 -(% style="display:none" %) (%%)
209 +* Smart liquefied gas solution
195 195  
196 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
197 197  
198 198  
199 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
213 +== 1.7 Precautions ==
200 200  
201 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
202 202  
203 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
216 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
204 204  
218 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
205 205  
206 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
220 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
207 207  
208 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
209 209  
210 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
223 +(% style="display:none" %)
211 211  
225 +== 1.8 Sleep mode and working mode ==
212 212  
213 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
214 214  
228 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
215 215  
216 -(% style="color:blue" %)**Register the device**
230 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
217 217  
218 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
219 219  
233 +== 1.9 Button & LEDs ==
220 220  
221 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
222 222  
223 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
236 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
224 224  
225 225  
226 -(% style="color:blue" %)**Add APP EUI in the application**
239 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
240 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
241 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
242 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
243 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
244 +)))
245 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
246 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
247 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
248 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
249 +)))
250 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
227 227  
228 228  
229 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
230 230  
254 +== 1.10 BLE connection ==
231 231  
232 -(% style="color:blue" %)**Add APP KEY**
233 233  
234 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
257 +DDS20-LB support BLE remote configure.
235 235  
259 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
236 236  
237 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
261 +* Press button to send an uplink
262 +* Press button to active device.
263 +* Device Power on or reset.
238 238  
265 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
239 239  
240 -Press the button for 5 seconds to activate the LDS12-LB.
241 241  
242 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
268 +== 1.11 Pin Definitions ==
243 243  
244 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
270 +[[image:image-20230523174230-1.png]]
245 245  
246 246  
247 -== 2.3 ​Uplink Payload ==
273 +== 1.12 Mechanical ==
248 248  
249 -=== 2.3.1 Device Status, FPORT~=5 ===
250 250  
276 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
251 251  
252 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
253 253  
254 -The Payload format is as below.
279 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
255 255  
256 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
257 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
258 -**Size(bytes)**
259 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
260 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
261 261  
262 -Example parse in TTNv3
282 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
263 263  
264 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
265 265  
266 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
285 +(% style="color:blue" %)**Probe Mechanical:**
267 267  
268 -(% style="color:blue" %)**Frequency Band**:
287 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
269 269  
270 -0x01: EU868
271 271  
272 -0x02: US915
290 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
273 273  
274 -0x03: IN865
275 275  
276 -0x04: AU915
293 += 2. Configure DDS20-LB to connect to LoRaWAN network =
277 277  
278 -0x05: KZ865
295 +== 2.1 How it works ==
279 279  
280 -0x06: RU864
281 281  
282 -0x07: AS923
298 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
283 283  
284 -0x08: AS923-1
300 +(% style="display:none" %) (%%)
285 285  
286 -0x09: AS923-2
302 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
287 287  
288 -0x0a: AS923-3
289 289  
290 -0x0b: CN470
305 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
291 291  
292 -0x0c: EU433
307 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
293 293  
294 -0x0d: KR920
309 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
295 295  
296 -0x0e: MA869
297 297  
298 -(% style="color:blue" %)**Sub-Band**:
312 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
299 299  
300 -AU915 and US915:value 0x00 ~~ 0x08
314 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
301 301  
302 -CN470: value 0x0B ~~ 0x0C
316 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
303 303  
304 -Other Bands: Always 0x00
305 305  
306 -(% style="color:blue" %)**Battery Info**:
319 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
307 307  
308 -Check the battery voltage.
309 309  
310 -Ex1: 0x0B45 = 2885mV
322 +(% style="color:blue" %)**Register the device**
311 311  
312 -Ex2: 0x0B49 = 2889mV
324 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
313 313  
314 314  
315 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
327 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
316 316  
329 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
317 317  
318 -(((
319 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
320 -)))
321 321  
322 -(((
323 -Uplink payload includes in total 11 bytes.
324 -)))
332 +(% style="color:blue" %)**Add APP EUI in the application**
325 325  
326 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
327 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
328 -**Size(bytes)**
329 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
330 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
331 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
332 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
333 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
334 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
335 -[[Message Type>>||anchor="HMessageType"]]
336 -)))
337 337  
338 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
335 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
339 339  
340 340  
341 -==== (% style="color:blue" %)**Battery Info**(%%) ====
338 +(% style="color:blue" %)**Add APP KEY**
342 342  
340 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
343 343  
344 -Check the battery voltage for LDS12-LB.
345 345  
346 -Ex1: 0x0B45 = 2885mV
343 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
347 347  
348 -Ex2: 0x0B49 = 2889mV
349 349  
346 +Press the button for 5 seconds to activate the DDS20-LB.
350 350  
351 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
348 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
352 352  
350 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
353 353  
354 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
355 355  
353 +== 2.3  ​Uplink Payload ==
356 356  
357 -**Example**:
358 358  
359 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
356 +(((
357 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
358 +)))
360 360  
361 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
360 +(((
361 +Uplink payload includes in total 8 bytes.
362 +)))
362 362  
364 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
365 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
366 +**Size(bytes)**
367 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
368 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
369 +[[Distance>>||anchor="H2.3.2A0Distance"]]
370 +(unit: mm)
371 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
372 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
373 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
363 363  
364 -==== (% style="color:blue" %)**Distance**(%%) ====
375 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
365 365  
366 366  
367 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
378 +=== 2.3.1  Battery Info ===
368 368  
369 369  
370 -**Example**:
381 +Check the battery voltage for DDS20-LB.
371 371  
372 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
383 +Ex1: 0x0B45 = 2885mV
373 373  
385 +Ex2: 0x0B49 = 2889mV
374 374  
375 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
376 376  
388 +=== 2.3.2  Distance ===
377 377  
378 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
379 379  
391 +(((
392 +Get the distance. Flat object range 20mm - 2000mm.
393 +)))
380 380  
381 -**Example**:
395 +(((
396 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
382 382  
383 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
398 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
399 +)))
384 384  
385 -Customers can judge whether they need to adjust the environment based on the signal strength.
401 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
386 386  
403 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
387 387  
388 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
389 389  
390 390  
391 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
407 +=== 2.3.3  Interrupt Pin ===
392 392  
393 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
394 394  
410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
411 +
395 395  **Example:**
396 396  
397 397  0x00: Normal uplink packet.
... ... @@ -399,60 +399,53 @@
399 399  0x01: Interrupt Uplink Packet.
400 400  
401 401  
402 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
419 +=== 2.3.4  DS18B20 Temperature sensor ===
403 403  
404 404  
405 -Characterize the internal temperature value of the sensor.
422 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
406 406  
407 -**Example: **
408 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
409 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
424 +**Example**:
410 410  
426 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
411 411  
412 -==== (% style="color:blue" %)**Message Type**(%%) ====
428 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
413 413  
414 414  
431 +=== 2.3.5  Sensor Flag ===
432 +
433 +
415 415  (((
416 -For a normal uplink payload, the message type is always 0x01.
435 +0x01: Detect Ultrasonic Sensor
417 417  )))
418 418  
419 419  (((
420 -Valid Message Type:
439 +0x00: No Ultrasonic Sensor
421 421  )))
422 422  
423 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
424 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
425 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
426 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
427 427  
443 +=== 2.3.6  Decode payload in The Things Network ===
428 428  
429 429  
430 -=== 2.3.3 Decode payload in The Things Network ===
431 -
432 -
433 433  While using TTN network, you can add the payload format to decode the payload.
434 434  
435 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
436 436  
450 +The payload decoder function for TTN V3 is here:
437 437  
438 438  (((
439 -The payload decoder function for TTN is here:
453 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
440 440  )))
441 441  
442 -(((
443 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
444 -)))
445 445  
457 +== 2.4  Uplink Interval ==
446 446  
447 -== 2.4 Uplink Interval ==
448 448  
460 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
449 449  
450 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
451 451  
463 +== 2.5  ​Show Data in DataCake IoT Server ==
452 452  
453 -== 2.5 ​Show Data in DataCake IoT Server ==
454 454  
455 -
456 456  (((
457 457  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
458 458  )))
... ... @@ -475,7 +475,7 @@
475 475  
476 476  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
477 477  
478 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
488 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
479 479  
480 480  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
481 481  
... ... @@ -488,19 +488,19 @@
488 488  == 2.6 Datalog Feature ==
489 489  
490 490  
491 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
501 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
492 492  
493 493  
494 494  === 2.6.1 Ways to get datalog via LoRaWAN ===
495 495  
496 496  
497 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
507 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
498 498  
499 499  * (((
500 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
510 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
501 501  )))
502 502  * (((
503 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
513 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
504 504  )))
505 505  
506 506  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -511,7 +511,7 @@
511 511  === 2.6.2 Unix TimeStamp ===
512 512  
513 513  
514 -LDS12-LB uses Unix TimeStamp format based on
524 +DDS20-LB uses Unix TimeStamp format based on
515 515  
516 516  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
517 517  
... ... @@ -530,7 +530,7 @@
530 530  
531 531  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
532 532  
533 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
543 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
534 534  
535 535  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
536 536  
... ... @@ -541,7 +541,7 @@
541 541  Users can poll sensor values based on timestamps. Below is the downlink command.
542 542  
543 543  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
544 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
554 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
545 545  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
546 546  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
547 547  
... ... @@ -558,7 +558,7 @@
558 558  )))
559 559  
560 560  (((
561 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
571 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
562 562  )))
563 563  
564 564  
... ... @@ -565,105 +565,17 @@
565 565  == 2.7 Frequency Plans ==
566 566  
567 567  
568 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
578 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
569 569  
570 570  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
571 571  
572 572  
573 -== 2.8 LiDAR ToF Measurement ==
583 += 3. Configure DDS20-LB =
574 574  
575 -=== 2.8.1 Principle of Distance Measurement ===
576 -
577 -
578 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
579 -
580 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
581 -
582 -
583 -=== 2.8.2 Distance Measurement Characteristics ===
584 -
585 -
586 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
587 -
588 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
589 -
590 -
591 -(((
592 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
593 -)))
594 -
595 -(((
596 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
597 -)))
598 -
599 -(((
600 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
601 -)))
602 -
603 -
604 -(((
605 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
606 -)))
607 -
608 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
609 -
610 -(((
611 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
612 -)))
613 -
614 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
615 -
616 -(((
617 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
618 -)))
619 -
620 -
621 -=== 2.8.3 Notice of usage ===
622 -
623 -
624 -Possible invalid /wrong reading for LiDAR ToF tech:
625 -
626 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
627 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
628 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
629 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
630 -
631 -
632 -
633 -=== 2.8.4  Reflectivity of different objects ===
634 -
635 -
636 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
637 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
638 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
639 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
640 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
641 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
642 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
643 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
644 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
645 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
646 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
647 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
648 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
649 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
650 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
651 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
652 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
653 -Unpolished white metal surface
654 -)))|(% style="width:93px" %)130%
655 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
656 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
657 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
658 -
659 -
660 -
661 -= 3. Configure LDS12-LB =
662 -
663 663  == 3.1 Configure Methods ==
664 664  
665 665  
666 -LDS12-LB supports below configure method:
588 +DDS20-LB supports below configure method:
667 667  
668 668  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
669 669  
... ... @@ -687,10 +687,10 @@
687 687  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
688 688  
689 689  
690 -== 3.3 Commands special design for LDS12-LB ==
612 +== 3.3 Commands special design for DDS20-LB ==
691 691  
692 692  
693 -These commands only valid for LDS12-LB, as below:
615 +These commands only valid for DDS20-LB, as below:
694 694  
695 695  
696 696  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -705,7 +705,7 @@
705 705  )))
706 706  
707 707  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
708 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
630 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
709 709  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
710 710  30000
711 711  OK
... ... @@ -748,7 +748,7 @@
748 748  (% style="color:blue" %)**AT Command: AT+INTMOD**
749 749  
750 750  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
751 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
673 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
752 752  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
753 753  0
754 754  OK
... ... @@ -774,39 +774,10 @@
774 774  
775 775  
776 776  
777 -=== 3.3.3  Set Power Output Duration ===
778 -
779 -Control the output duration 3V3 . Before each sampling, device will
780 -
781 -~1. first enable the power output to external sensor,
782 -
783 -2. keep it on as per duration, read sensor value and construct uplink payload
784 -
785 -3. final, close the power output.
786 -
787 -(% style="color:blue" %)**AT Command: AT+3V3T**
788 -
789 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
790 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
791 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
792 -OK
793 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
794 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
795 -
796 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
797 -Format: Command Code (0x07) followed by 3 bytes.
798 -
799 -The first byte is 01,the second and third bytes are the time to turn on.
800 -
801 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
802 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
803 -
804 -
805 -
806 806  = 4. Battery & Power Consumption =
807 807  
808 808  
809 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
702 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
810 810  
811 811  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
812 812  
... ... @@ -815,7 +815,7 @@
815 815  
816 816  
817 817  (% class="wikigeneratedid" %)
818 -User can change firmware LDS12-LB to:
711 +User can change firmware DDS20-LB to:
819 819  
820 820  * Change Frequency band/ region.
821 821  
... ... @@ -823,7 +823,7 @@
823 823  
824 824  * Fix bugs.
825 825  
826 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
719 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
827 827  
828 828  Methods to Update Firmware:
829 829  
... ... @@ -835,38 +835,39 @@
835 835  
836 836  = 6. FAQ =
837 837  
838 -== 6.1 What is the frequency plan for LDS12-LB? ==
731 +== 6.1  What is the frequency plan for DDS20-LB? ==
839 839  
840 840  
841 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
734 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
842 842  
843 843  
844 -= 7Trouble Shooting =
737 +== 6.2  Can I use DDS20-LB in condensation environment? ==
845 845  
846 -== 7.1 AT Command input doesn't work ==
847 847  
740 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
848 848  
849 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
850 850  
743 += 7.  Trouble Shooting =
851 851  
852 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
745 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
853 853  
854 854  
855 -(((
856 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
857 -)))
748 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
858 858  
859 -(((
860 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
861 -)))
862 862  
751 +== 7.2  AT Command input doesn't work ==
863 863  
864 -(((
865 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
866 -)))
867 867  
754 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
755 +
756 +
757 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
758 +
759 +
868 868  (((
869 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
761 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
762 +
763 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
870 870  )))
871 871  
872 872  
... ... @@ -873,7 +873,7 @@
873 873  = 8. Order Info =
874 874  
875 875  
876 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
770 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
877 877  
878 878  (% style="color:red" %)**XXX**(%%): **The default frequency band**
879 879  
... ... @@ -900,7 +900,7 @@
900 900  
901 901  (% style="color:#037691" %)**Package Includes**:
902 902  
903 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
797 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
904 904  
905 905  (% style="color:#037691" %)**Dimension and weight**:
906 906  
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content