Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.18
edited by Xiaoling
on 2023/07/15 15:53
Change comment: There is no comment for this version
To version 82.3
edited by Xiaoling
on 2023/06/14 16:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -54,8 +54,6 @@
54 54  * Downlink to change configure
55 55  * 8500mAh Battery for long term use
56 56  
57 -
58 -
59 59  == 1.3 Specification ==
60 60  
61 61  
... ... @@ -101,24 +101,135 @@
101 101  * Sleep Mode: 5uA @ 3.3v
102 102  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103 103  
102 +== 1.4 Suitable Container & Liquid ==
104 104  
105 105  
106 -== 1.4 Applications ==
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
107 107  
112 +(% style="display:none" %)
108 108  
109 -* Horizontal distance measurement
110 -* Parking management system
111 -* Object proximity and presence detection
112 -* Intelligent trash can management system
113 -* Robot obstacle avoidance
114 -* Automatic control
115 -* Sewer
114 +== 1.5 Install LDS12-LB ==
116 116  
117 117  
117 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
118 118  
119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
120 +
121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
122 +
123 +
124 +(((
125 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
126 +)))
127 +
128 +(((
129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
130 +)))
131 +
132 +[[image:image-20230613143052-5.png]]
133 +
134 +
135 +No polish needed if the container is shine metal surface without paint or non-metal container.
136 +
137 +[[image:image-20230613143125-6.png]]
138 +
139 +
140 +(((
141 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
142 +)))
143 +
144 +(((
145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
146 +)))
147 +
148 +(((
149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
150 +)))
151 +
152 +(((
153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
154 +)))
155 +
156 +
157 +(((
158 +(% style="color:blue" %)**LED Status:**
159 +)))
160 +
161 +* (((
162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
163 +)))
164 +
165 +* (((
166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
167 +)))
168 +* (((
169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
170 +)))
171 +
172 +(((
173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
174 +)))
175 +
176 +
177 +(((
178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
179 +)))
180 +
181 +
182 +(((
183 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
184 +)))
185 +
186 +(((
187 +Prepare Eproxy AB glue.
188 +)))
189 +
190 +(((
191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
192 +)))
193 +
194 +(((
195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
196 +)))
197 +
198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
199 +
200 +
201 +(((
202 +(% style="color:red" %)**Note :**
203 +
204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
205 +)))
206 +
207 +(((
208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
209 +)))
210 +
211 +
212 +== 1.6 Applications ==
213 +
214 +
215 +* Smart liquid control solution
216 +
217 +* Smart liquefied gas solution
218 +
219 +== 1.7 Precautions ==
220 +
221 +
222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
223 +
224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
225 +
226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
227 +
119 119  (% style="display:none" %)
120 120  
121 -== 1.5 Sleep mode and working mode ==
230 +== 1.8 Sleep mode and working mode ==
122 122  
123 123  
124 124  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
... ... @@ -126,7 +126,7 @@
126 126  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127 127  
128 128  
129 -== 1.6 Button & LEDs ==
238 +== 1.9 Button & LEDs ==
130 130  
131 131  
132 132  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -133,7 +133,7 @@
133 133  
134 134  
135 135  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
245 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
137 137  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 138  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 139  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -145,7 +145,7 @@
145 145  )))
146 146  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 147  
148 -== 1.7 BLE connection ==
257 +== 1.10 BLE connection ==
149 149  
150 150  
151 151  LDS12-LB support BLE remote configure.
... ... @@ -159,12 +159,12 @@
159 159  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
160 160  
161 161  
162 -== 1.8 Pin Definitions ==
271 +== 1.11 Pin Definitions ==
163 163  
164 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
273 +[[image:image-20230523174230-1.png]]
165 165  
166 166  
167 -== 1.9 Mechanical ==
276 +== 1.12 Mechanical ==
168 168  
169 169  
170 170  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -179,6 +179,7 @@
179 179  (% style="color:blue" %)**Probe Mechanical:**
180 180  
181 181  
291 +
182 182  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
183 183  
184 184  
... ... @@ -198,7 +198,7 @@
198 198  
199 199  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
200 200  
201 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
311 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
202 202  
203 203  
204 204  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -242,101 +242,32 @@
242 242  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
243 243  
244 244  
245 -== 2.3 ​Uplink Payload ==
355 +== 2.3  ​Uplink Payload ==
246 246  
247 -=== 2.3.1 Device Status, FPORT~=5 ===
248 248  
249 -
250 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
251 -
252 -The Payload format is as below.
253 -
254 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
255 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
256 -**Size(bytes)**
257 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
258 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
259 -
260 -Example parse in TTNv3
261 -
262 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
263 -
264 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
265 -
266 -(% style="color:blue" %)**Frequency Band**:
267 -
268 -0x01: EU868
269 -
270 -0x02: US915
271 -
272 -0x03: IN865
273 -
274 -0x04: AU915
275 -
276 -0x05: KZ865
277 -
278 -0x06: RU864
279 -
280 -0x07: AS923
281 -
282 -0x08: AS923-1
283 -
284 -0x09: AS923-2
285 -
286 -0x0a: AS923-3
287 -
288 -0x0b: CN470
289 -
290 -0x0c: EU433
291 -
292 -0x0d: KR920
293 -
294 -0x0e: MA869
295 -
296 -(% style="color:blue" %)**Sub-Band**:
297 -
298 -AU915 and US915:value 0x00 ~~ 0x08
299 -
300 -CN470: value 0x0B ~~ 0x0C
301 -
302 -Other Bands: Always 0x00
303 -
304 -(% style="color:blue" %)**Battery Info**:
305 -
306 -Check the battery voltage.
307 -
308 -Ex1: 0x0B45 = 2885mV
309 -
310 -Ex2: 0x0B49 = 2889mV
311 -
312 -
313 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
314 -
315 -
316 316  (((
317 317  LDS12-LB will uplink payload via LoRaWAN with below payload format: 
318 318  )))
319 319  
320 320  (((
321 -Uplink payload includes in total 11 bytes.
363 +Uplink payload includes in total 8 bytes.
322 322  )))
323 323  
324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
366 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
367 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
326 326  **Size(bytes)**
327 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 -[[Message Type>>||anchor="HMessageType"]]
334 -)))
369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
371 +[[Distance>>||anchor="H2.3.2A0Distance"]]
372 +(unit: mm)
373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
335 335  
336 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
337 337  
338 338  
339 -==== (% style="color:blue" %)**Battery Info**(%%) ====
380 +=== 2.3.1  Battery Info ===
340 340  
341 341  
342 342  Check the battery voltage for LDS12-LB.
... ... @@ -346,50 +346,28 @@
346 346  Ex2: 0x0B49 = 2889mV
347 347  
348 348  
349 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
390 +=== 2.3.2  Distance ===
350 350  
351 351  
352 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
393 +(((
394 +Get the distance. Flat object range 20mm - 2000mm.
395 +)))
353 353  
397 +(((
398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
354 354  
355 -**Example**:
400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
401 +)))
356 356  
357 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
358 358  
359 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
360 360  
407 +=== 2.3.3  Interrupt Pin ===
361 361  
362 -==== (% style="color:blue" %)**Distance**(%%) ====
363 363  
364 -
365 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366 -
367 -
368 -**Example**:
369 -
370 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371 -
372 -
373 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
374 -
375 -
376 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
377 -
378 -
379 -**Example**:
380 -
381 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382 -
383 -Customers can judge whether they need to adjust the environment based on the signal strength.
384 -
385 -
386 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
387 -
388 -
389 389  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
390 390  
391 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
392 -
393 393  **Example:**
394 394  
395 395  0x00: Normal uplink packet.
... ... @@ -397,56 +397,51 @@
397 397  0x01: Interrupt Uplink Packet.
398 398  
399 399  
400 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
419 +=== 2.3.4  DS18B20 Temperature sensor ===
401 401  
402 402  
403 -Characterize the internal temperature value of the sensor.
422 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
404 404  
405 -**Example: **
406 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
407 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
424 +**Example**:
408 408  
426 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
409 409  
410 -==== (% style="color:blue" %)**Message Type**(%%) ====
428 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
411 411  
412 412  
431 +=== 2.3.5  Sensor Flag ===
432 +
433 +
413 413  (((
414 -For a normal uplink payload, the message type is always 0x01.
435 +0x01: Detect Ultrasonic Sensor
415 415  )))
416 416  
417 417  (((
418 -Valid Message Type:
439 +0x00: No Ultrasonic Sensor
419 419  )))
420 420  
421 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
422 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
423 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
424 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
425 425  
426 -=== 2.3.3 Decode payload in The Things Network ===
443 +=== 2.3.6  Decode payload in The Things Network ===
427 427  
428 428  
429 429  While using TTN network, you can add the payload format to decode the payload.
430 430  
431 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
432 432  
450 +The payload decoder function for TTN V3 is here:
433 433  
434 434  (((
435 -The payload decoder function for TTN is here:
453 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 436  )))
437 437  
438 -(((
439 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
440 -)))
441 441  
457 +== 2.4  Uplink Interval ==
442 442  
443 -== 2.4 Uplink Interval ==
444 444  
445 -
446 446  The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
447 447  
448 448  
449 -== 2.5 ​Show Data in DataCake IoT Server ==
463 +== 2.5  ​Show Data in DataCake IoT Server ==
450 450  
451 451  
452 452  (((
... ... @@ -537,7 +537,7 @@
537 537  Users can poll sensor values based on timestamps. Below is the downlink command.
538 538  
539 539  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
540 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
554 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
541 541  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
542 542  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
543 543  
... ... @@ -566,90 +566,6 @@
566 566  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
567 567  
568 568  
569 -== 2.8 LiDAR ToF Measurement ==
570 -
571 -=== 2.8.1 Principle of Distance Measurement ===
572 -
573 -
574 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
575 -
576 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
577 -
578 -
579 -=== 2.8.2 Distance Measurement Characteristics ===
580 -
581 -
582 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
583 -
584 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
585 -
586 -
587 -(((
588 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
589 -)))
590 -
591 -(((
592 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
593 -)))
594 -
595 -(((
596 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
597 -)))
598 -
599 -
600 -(((
601 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
602 -)))
603 -
604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
605 -
606 -(((
607 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
608 -)))
609 -
610 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
611 -
612 -(((
613 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
614 -)))
615 -
616 -
617 -=== 2.8.3 Notice of usage ===
618 -
619 -
620 -Possible invalid /wrong reading for LiDAR ToF tech:
621 -
622 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
623 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
624 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
625 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
626 -
627 -=== 2.8.4  Reflectivity of different objects ===
628 -
629 -
630 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
631 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
632 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
633 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
634 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
635 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
636 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
637 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
638 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
639 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
640 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
641 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
642 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
643 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
644 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
645 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
646 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
647 -Unpolished white metal surface
648 -)))|(% style="width:93px" %)130%
649 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
650 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
651 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
652 -
653 653  = 3. Configure LDS12-LB =
654 654  
655 655  == 3.1 Configure Methods ==
... ... @@ -695,7 +695,7 @@
695 695  )))
696 696  
697 697  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
698 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
628 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
699 699  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
700 700  30000
701 701  OK
... ... @@ -738,7 +738,7 @@
738 738  (% style="color:blue" %)**AT Command: AT+INTMOD**
739 739  
740 740  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
741 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
671 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
742 742  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
743 743  0
744 744  OK
... ... @@ -762,33 +762,6 @@
762 762  
763 763  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
764 764  
765 -=== 3.3.3  Set Power Output Duration ===
766 -
767 -Control the output duration 3V3 . Before each sampling, device will
768 -
769 -~1. first enable the power output to external sensor,
770 -
771 -2. keep it on as per duration, read sensor value and construct uplink payload
772 -
773 -3. final, close the power output.
774 -
775 -(% style="color:blue" %)**AT Command: AT+3V3T**
776 -
777 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
778 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
779 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
780 -OK
781 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
782 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
783 -
784 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
785 -Format: Command Code (0x07) followed by 3 bytes.
786 -
787 -The first byte is 01,the second and third bytes are the time to turn on.
788 -
789 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
790 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
791 -
792 792  = 4. Battery & Power Consumption =
793 793  
794 794  
... ... @@ -809,7 +809,7 @@
809 809  
810 810  * Fix bugs.
811 811  
812 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
715 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
813 813  
814 814  Methods to Update Firmware:
815 815  
... ... @@ -837,11 +837,11 @@
837 837  
838 838  
839 839  (((
840 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
743 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
841 841  )))
842 842  
843 843  (((
844 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
747 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
845 845  )))
846 846  
847 847  
... ... @@ -850,7 +850,7 @@
850 850  )))
851 851  
852 852  (((
853 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
756 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
854 854  )))
855 855  
856 856  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content