Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.18
edited by Xiaoling
on 2023/07/15 15:53
Change comment: There is no comment for this version
To version 80.3
edited by Xiaoling
on 2023/06/14 15:53
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,18 +44,19 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
56 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  
58 -
59 59  == 1.3 Specification ==
60 60  
61 61  
... ... @@ -64,23 +64,6 @@
64 64  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 65  * Operating Temperature: -40 ~~ 85°C
66 66  
67 -(% style="color:#037691" %)**Probe Specification:**
68 -
69 -* Storage temperature:-20℃~~75℃
70 -* Operating temperature : -20℃~~60℃
71 -* Measure Distance:
72 -** 0.1m ~~ 12m @ 90% Reflectivity
73 -** 0.1m ~~ 4m @ 10% Reflectivity
74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution : 5mm
76 -* Ambient light immunity : 70klux
77 -* Enclosure rating : IP65
78 -* Light source : LED
79 -* Central wavelength : 850nm
80 -* FOV : 3.6°
81 -* Material of enclosure : ABS+PC
82 -* Wire length : 25cm
83 -
84 84  (% style="color:#037691" %)**LoRa Spec:**
85 85  
86 86  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -102,23 +102,137 @@
102 102  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103 103  
104 104  
89 +== 1.4 Suitable Container & Liquid ==
105 105  
106 -== 1.4 Applications ==
107 107  
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
108 108  
109 -* Horizontal distance measurement
110 -* Parking management system
111 -* Object proximity and presence detection
112 -* Intelligent trash can management system
113 -* Robot obstacle avoidance
114 -* Automatic control
115 -* Sewer
116 116  
100 +(% style="display:none" %)
117 117  
102 +== 1.5 Install DDS20-LB ==
118 118  
104 +
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
106 +
107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 +
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
110 +
111 +
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
115 +
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 +)))
119 +
120 +[[image:image-20230613143052-5.png]]
121 +
122 +
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
124 +
125 +[[image:image-20230613143125-6.png]]
126 +
127 +
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
131 +
132 +(((
133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
135 +
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
138 +)))
139 +
140 +(((
141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
143 +
144 +
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
148 +
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
152 +
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
159 +
160 +(((
161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
163 +
164 +
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
168 +
169 +
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
173 +
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
177 +
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
181 +
182 +(((
183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
184 +)))
185 +
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
187 +
188 +
189 +(((
190 +(% style="color:red" %)**Note :**
191 +
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
194 +
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
198 +
199 +
200 +== 1.6 Applications ==
201 +
202 +
203 +* Smart liquid control solution
204 +
205 +* Smart liquefied gas solution
206 +
207 +
208 +== 1.7 Precautions ==
209 +
210 +
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
212 +
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
214 +
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
216 +
119 119  (% style="display:none" %)
120 120  
121 -== 1.5 Sleep mode and working mode ==
219 +== 1.8 Sleep mode and working mode ==
122 122  
123 123  
124 124  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
... ... @@ -126,7 +126,7 @@
126 126  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127 127  
128 128  
129 -== 1.6 Button & LEDs ==
227 +== 1.9 Button & LEDs ==
130 130  
131 131  
132 132  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -133,7 +133,7 @@
133 133  
134 134  
135 135  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
137 137  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 138  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 139  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -145,11 +145,12 @@
145 145  )))
146 146  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 147  
148 -== 1.7 BLE connection ==
149 149  
247 +== 1.10 BLE connection ==
150 150  
151 -LDS12-LB support BLE remote configure.
152 152  
250 +DDS20-LB support BLE remote configure.
251 +
153 153  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
154 154  
155 155  * Press button to send an uplink
... ... @@ -159,12 +159,12 @@
159 159  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
160 160  
161 161  
162 -== 1.8 Pin Definitions ==
261 +== 1.11 Pin Definitions ==
163 163  
164 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
263 +[[image:image-20230523174230-1.png]]
165 165  
166 166  
167 -== 1.9 Mechanical ==
266 +== 1.12 Mechanical ==
168 168  
169 169  
170 170  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -178,16 +178,18 @@
178 178  
179 179  (% style="color:blue" %)**Probe Mechanical:**
180 180  
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
181 181  
182 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
183 183  
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
184 184  
185 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
186 186  
286 += 2. Configure DDS20-LB to connect to LoRaWAN network =
287 +
187 187  == 2.1 How it works ==
188 188  
189 189  
190 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
191 191  
192 192  (% style="display:none" %) (%%)
193 193  
... ... @@ -198,12 +198,12 @@
198 198  
199 199  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
200 200  
201 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
202 202  
203 203  
204 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
205 205  
206 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
207 207  
208 208  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
209 209  
... ... @@ -232,10 +232,10 @@
232 232  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
233 233  
234 234  
235 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
236 236  
237 237  
238 -Press the button for 5 seconds to activate the LDS12-LB.
339 +Press the button for 5 seconds to activate the DDS20-LB.
239 239  
240 240  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
241 241  
... ... @@ -242,154 +242,64 @@
242 242  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
243 243  
244 244  
245 -== 2.3 ​Uplink Payload ==
346 +== 2.3  ​Uplink Payload ==
246 246  
247 -=== 2.3.1 Device Status, FPORT~=5 ===
248 248  
349 +(((
350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
351 +)))
249 249  
250 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
353 +(((
354 +Uplink payload includes in total 8 bytes.
355 +)))
251 251  
252 -The Payload format is as below.
253 -
254 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
255 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
256 256  **Size(bytes)**
257 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
258 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
259 259  
260 -Example parse in TTNv3
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
261 261  
262 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
263 263  
264 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
371 +=== 2.3. Battery Info ===
265 265  
266 -(% style="color:blue" %)**Frequency Band**:
267 267  
268 -0x01: EU868
374 +Check the battery voltage for DDS20-LB.
269 269  
270 -0x02: US915
271 -
272 -0x03: IN865
273 -
274 -0x04: AU915
275 -
276 -0x05: KZ865
277 -
278 -0x06: RU864
279 -
280 -0x07: AS923
281 -
282 -0x08: AS923-1
283 -
284 -0x09: AS923-2
285 -
286 -0x0a: AS923-3
287 -
288 -0x0b: CN470
289 -
290 -0x0c: EU433
291 -
292 -0x0d: KR920
293 -
294 -0x0e: MA869
295 -
296 -(% style="color:blue" %)**Sub-Band**:
297 -
298 -AU915 and US915:value 0x00 ~~ 0x08
299 -
300 -CN470: value 0x0B ~~ 0x0C
301 -
302 -Other Bands: Always 0x00
303 -
304 -(% style="color:blue" %)**Battery Info**:
305 -
306 -Check the battery voltage.
307 -
308 308  Ex1: 0x0B45 = 2885mV
309 309  
310 310  Ex2: 0x0B49 = 2889mV
311 311  
312 312  
313 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
381 +=== 2.3.2  Distance ===
314 314  
315 315  
316 316  (((
317 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
385 +Get the distance. Flat object range 20mm - 2000mm.
318 318  )))
319 319  
320 320  (((
321 -Uplink payload includes in total 11 bytes.
322 -)))
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
323 323  
324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 -**Size(bytes)**
327 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 -[[Message Type>>||anchor="HMessageType"]]
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
334 334  )))
335 335  
336 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
337 337  
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
338 338  
339 -==== (% style="color:blue" %)**Battery Info**(%%) ====
340 340  
399 +=== 2.3.3  Interrupt Pin ===
341 341  
342 -Check the battery voltage for LDS12-LB.
343 343  
344 -Ex1: 0x0B45 = 2885mV
345 -
346 -Ex2: 0x0B49 = 2889mV
347 -
348 -
349 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
350 -
351 -
352 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
353 -
354 -
355 -**Example**:
356 -
357 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
358 -
359 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
360 -
361 -
362 -==== (% style="color:blue" %)**Distance**(%%) ====
363 -
364 -
365 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366 -
367 -
368 -**Example**:
369 -
370 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371 -
372 -
373 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
374 -
375 -
376 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
377 -
378 -
379 -**Example**:
380 -
381 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382 -
383 -Customers can judge whether they need to adjust the environment based on the signal strength.
384 -
385 -
386 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
387 -
388 -
389 389  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
390 390  
391 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
392 -
393 393  **Example:**
394 394  
395 395  0x00: Normal uplink packet.
... ... @@ -397,58 +397,53 @@
397 397  0x01: Interrupt Uplink Packet.
398 398  
399 399  
400 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
411 +=== 2.3.4  DS18B20 Temperature sensor ===
401 401  
402 402  
403 -Characterize the internal temperature value of the sensor.
414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
404 404  
405 -**Example: **
406 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
407 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
416 +**Example**:
408 408  
418 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
409 409  
410 -==== (% style="color:blue" %)**Message Type**(%%) ====
420 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
411 411  
412 412  
423 +=== 2.3.5  Sensor Flag ===
424 +
425 +
413 413  (((
414 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
415 415  )))
416 416  
417 417  (((
418 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
419 419  )))
420 420  
421 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
422 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
423 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
424 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
425 425  
426 -=== 2.3.3 Decode payload in The Things Network ===
435 +=== 2.3.6  Decode payload in The Things Network ===
427 427  
428 428  
429 429  While using TTN network, you can add the payload format to decode the payload.
430 430  
431 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
432 432  
442 +The payload decoder function for TTN V3 is here:
433 433  
434 434  (((
435 -The payload decoder function for TTN is here:
445 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 436  )))
437 437  
438 -(((
439 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
440 -)))
441 441  
449 +== 2.4  Uplink Interval ==
442 442  
443 -== 2.4 Uplink Interval ==
444 444  
452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
445 445  
446 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
447 447  
455 +== 2.5  ​Show Data in DataCake IoT Server ==
448 448  
449 -== 2.5 ​Show Data in DataCake IoT Server ==
450 450  
451 -
452 452  (((
453 453  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
454 454  )))
... ... @@ -471,7 +471,7 @@
471 471  
472 472  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
473 473  
474 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
475 475  
476 476  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
477 477  
... ... @@ -484,19 +484,19 @@
484 484  == 2.6 Datalog Feature ==
485 485  
486 486  
487 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
488 488  
489 489  
490 490  === 2.6.1 Ways to get datalog via LoRaWAN ===
491 491  
492 492  
493 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
494 494  
495 495  * (((
496 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
497 497  )))
498 498  * (((
499 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
500 500  )))
501 501  
502 502  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -507,7 +507,7 @@
507 507  === 2.6.2 Unix TimeStamp ===
508 508  
509 509  
510 -LDS12-LB uses Unix TimeStamp format based on
516 +DDS20-LB uses Unix TimeStamp format based on
511 511  
512 512  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
513 513  
... ... @@ -526,7 +526,7 @@
526 526  
527 527  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
528 528  
529 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
530 530  
531 531  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
532 532  
... ... @@ -537,7 +537,7 @@
537 537  Users can poll sensor values based on timestamps. Below is the downlink command.
538 538  
539 539  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
540 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
541 541  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
542 542  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
543 543  
... ... @@ -554,7 +554,7 @@
554 554  )))
555 555  
556 556  (((
557 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
558 558  )))
559 559  
560 560  
... ... @@ -561,101 +561,17 @@
561 561  == 2.7 Frequency Plans ==
562 562  
563 563  
564 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
565 565  
566 566  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
567 567  
568 568  
569 -== 2.8 LiDAR ToF Measurement ==
575 += 3. Configure DDS20-LB =
570 570  
571 -=== 2.8.1 Principle of Distance Measurement ===
572 -
573 -
574 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
575 -
576 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
577 -
578 -
579 -=== 2.8.2 Distance Measurement Characteristics ===
580 -
581 -
582 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
583 -
584 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
585 -
586 -
587 -(((
588 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
589 -)))
590 -
591 -(((
592 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
593 -)))
594 -
595 -(((
596 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
597 -)))
598 -
599 -
600 -(((
601 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
602 -)))
603 -
604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
605 -
606 -(((
607 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
608 -)))
609 -
610 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
611 -
612 -(((
613 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
614 -)))
615 -
616 -
617 -=== 2.8.3 Notice of usage ===
618 -
619 -
620 -Possible invalid /wrong reading for LiDAR ToF tech:
621 -
622 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
623 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
624 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
625 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
626 -
627 -=== 2.8.4  Reflectivity of different objects ===
628 -
629 -
630 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
631 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
632 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
633 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
634 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
635 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
636 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
637 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
638 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
639 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
640 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
641 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
642 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
643 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
644 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
645 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
646 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
647 -Unpolished white metal surface
648 -)))|(% style="width:93px" %)130%
649 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
650 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
651 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
652 -
653 -= 3. Configure LDS12-LB =
654 -
655 655  == 3.1 Configure Methods ==
656 656  
657 657  
658 -LDS12-LB supports below configure method:
580 +DDS20-LB supports below configure method:
659 659  
660 660  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
661 661  
... ... @@ -663,6 +663,7 @@
663 663  
664 664  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
665 665  
588 +
666 666  == 3.2 General Commands ==
667 667  
668 668  
... ... @@ -677,10 +677,10 @@
677 677  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
678 678  
679 679  
680 -== 3.3 Commands special design for LDS12-LB ==
603 +== 3.3 Commands special design for DDS20-LB ==
681 681  
682 682  
683 -These commands only valid for LDS12-LB, as below:
606 +These commands only valid for DDS20-LB, as below:
684 684  
685 685  
686 686  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -695,7 +695,7 @@
695 695  )))
696 696  
697 697  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
698 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
699 699  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
700 700  30000
701 701  OK
... ... @@ -738,7 +738,7 @@
738 738  (% style="color:blue" %)**AT Command: AT+INTMOD**
739 739  
740 740  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
741 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
742 742  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
743 743  0
744 744  OK
... ... @@ -762,37 +762,11 @@
762 762  
763 763  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
764 764  
765 -=== 3.3.3  Set Power Output Duration ===
766 766  
767 -Control the output duration 3V3 . Before each sampling, device will
768 -
769 -~1. first enable the power output to external sensor,
770 -
771 -2. keep it on as per duration, read sensor value and construct uplink payload
772 -
773 -3. final, close the power output.
774 -
775 -(% style="color:blue" %)**AT Command: AT+3V3T**
776 -
777 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
778 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
779 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
780 -OK
781 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
782 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
783 -
784 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
785 -Format: Command Code (0x07) followed by 3 bytes.
786 -
787 -The first byte is 01,the second and third bytes are the time to turn on.
788 -
789 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
790 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
791 -
792 792  = 4. Battery & Power Consumption =
793 793  
794 794  
795 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
796 796  
797 797  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
798 798  
... ... @@ -801,7 +801,7 @@
801 801  
802 802  
803 803  (% class="wikigeneratedid" %)
804 -User can change firmware LDS12-LB to:
701 +User can change firmware DDS20-LB to:
805 805  
806 806  * Change Frequency band/ region.
807 807  
... ... @@ -809,7 +809,7 @@
809 809  
810 810  * Fix bugs.
811 811  
812 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
813 813  
814 814  Methods to Update Firmware:
815 815  
... ... @@ -817,40 +817,42 @@
817 817  
818 818  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
819 819  
717 +
820 820  = 6. FAQ =
821 821  
822 -== 6.1 What is the frequency plan for LDS12-LB? ==
720 +== 6.1  What is the frequency plan for DDS20-LB? ==
823 823  
824 824  
825 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
826 826  
827 827  
828 -= 7Trouble Shooting =
726 +== 6.2  Can I use DDS20-LB in condensation environment? ==
829 829  
830 -== 7.1 AT Command input doesn't work ==
831 831  
729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
832 832  
833 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
834 834  
732 += 7.  Trouble Shooting =
835 835  
836 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
734 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
837 837  
838 838  
839 -(((
840 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
841 -)))
737 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
842 842  
843 -(((
844 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
845 -)))
846 846  
740 +== 7.2  AT Command input doesn't work ==
847 847  
848 -(((
849 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
850 -)))
851 851  
743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
744 +
745 +
746 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
747 +
748 +
852 852  (((
853 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
751 +
752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
854 854  )))
855 855  
856 856  
... ... @@ -857,7 +857,7 @@
857 857  = 8. Order Info =
858 858  
859 859  
860 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
861 861  
862 862  (% style="color:red" %)**XXX**(%%): **The default frequency band**
863 863  
... ... @@ -877,12 +877,13 @@
877 877  
878 878  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
879 879  
779 +
880 880  = 9. ​Packing Info =
881 881  
882 882  
883 883  (% style="color:#037691" %)**Package Includes**:
884 884  
885 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
886 886  
887 887  (% style="color:#037691" %)**Dimension and weight**:
888 888  
... ... @@ -894,6 +894,7 @@
894 894  
895 895  * Weight / pcs : g
896 896  
797 +
897 897  = 10. Support =
898 898  
899 899  
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content