Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LDS12-LB --LoRaWAN1 +LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 4153353-1.png]]2 +[[image:image-20230613133716-2.png||height="717" width="717"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,24 +18,24 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 22 22 23 23 24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWANLiDAR ToF (Timeof Flight) DistanceSensor**(%%) for Internet of Things solution. Itis capable to measure thedistancetoanobject as closeas 10 centimeters(+/- 5cm up to6m)andasfar as 12 meters(+/-1% startingat6m)!. TheLiDAR probeuseslaserinductiontechnologyfordistancemeasurement.25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server. 25 25 26 -The LDS12-LBcan be applied toscenariossuch as horizontal distancemeasurement, parkingmanagementsystem,objectproximityandpresencedetection,intelligent trashcan management system,robotobstacle avoidance,automaticcontrol,sewer,etc.27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 27 27 28 - Itdetects the distancebetweenemeasured object andthe sensor,anduploadsthevalueviawireless toLoRaWAN IoT Server.29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 29 29 30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 31 32 - LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 - LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]39 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,14 +44,16 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 48 +* Liquid Level Measurement by Ultrasonic technology 49 +* Measure through container, No need to contact Liquid 50 +* Valid level range 20mm - 2000mm 51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 57 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 57 57 ... ... @@ -64,23 +64,6 @@ 64 64 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 65 65 * Operating Temperature: -40 ~~ 85°C 66 66 67 -(% style="color:#037691" %)**Probe Specification:** 68 - 69 -* Storage temperature:-20℃~~75℃ 70 -* Operating temperature : -20℃~~60℃ 71 -* Measure Distance: 72 -** 0.1m ~~ 12m @ 90% Reflectivity 73 -** 0.1m ~~ 4m @ 10% Reflectivity 74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution : 5mm 76 -* Ambient light immunity : 70klux 77 -* Enclosure rating : IP65 78 -* Light source : LED 79 -* Central wavelength : 850nm 80 -* FOV : 3.6° 81 -* Material of enclosure : ABS+PC 82 -* Wire length : 25cm 83 - 84 84 (% style="color:#037691" %)**LoRa Spec:** 85 85 86 86 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -103,293 +103,326 @@ 103 103 104 104 105 105 106 -== 1.4 Applications==92 +== 1.4 Suitable Container & Liquid == 107 107 108 108 109 -* Horizontal distance measurement 110 -* Parking management system 111 -* Object proximity and presence detection 112 -* Intelligent trash can management system 113 -* Robot obstacle avoidance 114 -* Automatic control 115 -* Sewer 95 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 96 +* Container shape is regular, and surface is smooth. 97 +* Container Thickness: 98 +** Pure metal material. 2~~8mm, best is 3~~5mm 99 +** Pure non metal material: <10 mm 100 +* Pure liquid without irregular deposition. 116 116 117 117 118 118 119 119 (% style="display:none" %) 120 120 121 -== 1.5 S leepmode and working mode==106 +== 1.5 Install DDS20-LB == 122 122 123 123 124 -(% style="color:blue" %)** DeepSleepMode:**(%%)Sensordoesn'thave any LoRaWAN activate.This mode isused for storageandshippingto save battery life.109 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 125 125 126 -(% style="color: blue" %)**WorkingMode:**Inthis mode,Sensor willwork as LoRaWAN SensortoJoinLoRaWANnetworkand sendoutsensor data toserver. Between each sampling/tx/rx periodically, sensorwill be in IDLE mode), in IDLE mode, sensor has the samepower consumptionas Deep Sleep mode.111 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 127 127 113 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 128 128 129 -== 1.6 Button & LEDs == 130 130 116 +((( 117 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 118 +))) 131 131 132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 120 +((( 121 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 122 +))) 133 133 124 +[[image:image-20230613143052-5.png]] 134 134 135 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 137 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 126 + 127 +No polish needed if the container is shine metal surface without paint or non-metal container. 128 + 129 +[[image:image-20230613143125-6.png]] 130 + 131 + 132 +((( 133 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 140 140 ))) 141 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 142 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 143 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 144 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 135 + 136 +((( 137 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 145 145 ))) 146 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 147 147 148 -== 1.7 BLE connection == 140 +((( 141 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 142 +))) 149 149 144 +((( 145 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 146 +))) 150 150 151 -LDS12-LB support BLE remote configure. 152 152 153 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 149 +((( 150 +(% style="color:blue" %)**LED Status:** 151 +))) 154 154 155 -* Press button to send an uplink156 -* Pressbutton to active device.157 - * Device Power on or reset.153 +* ((( 154 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 155 +))) 158 158 159 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 157 +* ((( 158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 159 +))) 160 +* ((( 161 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 162 +))) 160 160 164 +((( 165 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 166 +))) 161 161 162 -== 1.8 Pin Definitions == 163 163 164 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 169 +((( 170 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 171 +))) 165 165 166 166 167 -== 1.9 Mechanical == 174 +((( 175 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 176 +))) 168 168 178 +((( 179 +Prepare Eproxy AB glue. 180 +))) 169 169 170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 182 +((( 183 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 184 +))) 171 171 186 +((( 187 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 188 +))) 172 172 173 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]190 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 174 174 175 175 176 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 193 +((( 194 +(% style="color:red" %)**Note :** 177 177 196 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 197 +))) 178 178 179 -(% style="color:blue" %)**Probe Mechanical:** 199 +((( 200 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 201 +))) 180 180 181 181 182 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]204 +== 1.6 Applications == 183 183 184 184 185 - =2.ConfigureLDS12-LB toconnecttoLoRaWAN network =207 +* Smart liquid control solution 186 186 187 - ==2.1Howitworks==209 +* Smart liquefied gas solution 188 188 189 189 190 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 191 191 192 - (%style="display:none"%) (%%)213 +== 1.7 Precautions == 193 193 194 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 195 195 216 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 196 196 197 -Fo llowingisanexampleforhowtojointhe[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Belowisthe network structure;we usethe[[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] asa LoRaWANgatewayinhisexample.218 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 198 198 199 - TheLPS8v2isalreadysetto connected to[[TTN network>>url:https://console.cloud.thethings.network/]],sowhatweneedtonowis configuretheTTNserver.220 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 200 200 201 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 202 202 223 +(% style="display:none" %) 203 203 204 - (% style="color:blue"%)**Step1:**(%%)CreateadeviceinTTNwiththeOTAA keys from LDS12-LB.225 +== 1.8 Sleep mode and working mode == 205 205 206 -Each LDS12-LB is shipped with a sticker with the default device EUI as below: 207 207 208 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]228 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 209 209 230 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 210 210 211 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 212 212 233 +== 1.9 Button & LEDs == 213 213 214 -(% style="color:blue" %)**Register the device** 215 215 216 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]236 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 217 217 218 218 219 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 239 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 240 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 241 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 242 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 243 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 244 +))) 245 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 246 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 247 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 248 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 249 +))) 250 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 220 220 221 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 222 222 223 223 224 - (% style="color:blue"%)**AddAPPEUIintheapplication**254 +== 1.10 BLE connection == 225 225 226 226 227 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]257 +DDS20-LB support BLE remote configure. 228 228 259 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 229 229 230 -(% style="color:blue" %)**Add APP KEY** 261 +* Press button to send an uplink 262 +* Press button to active device. 263 +* Device Power on or reset. 231 231 232 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]265 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 233 233 234 234 235 - (% style="color:blue"%)**Step2:**(%%)ActivateonLDS12-LB268 +== 1.11 Pin Definitions == 236 236 270 +[[image:image-20230523174230-1.png]] 237 237 238 -Press the button for 5 seconds to activate the LDS12-LB. 239 239 240 - (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue"%)**OTAmode**(%%) for 3 seconds. And then start to JOIN LoRaWANnetwork. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 secondsafterjoined in network.273 +== 1.12 Mechanical == 241 241 242 -After join success, it will start to upload messages to TTN and you can see the messages in the panel. 243 243 276 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 244 244 245 -== 2.3 Uplink Payload == 246 246 247 - === 2.3.1 DeviceStatus,FPORT~=5===279 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 248 248 249 249 250 -User scansethe downlinkcommand(**0x2601**) toaskLDS12-LBtosend device configure detail, includedevice configurestatus. LDS12-LB will uplinkapayload via FPort=5 to server.282 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 251 251 252 -The Payload format is as below. 253 253 254 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 255 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 256 -**Size(bytes)** 257 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 258 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 285 +(% style="color:blue" %)**Probe Mechanical:** 259 259 260 - ExampleparseTTNv3287 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 261 261 262 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 263 263 264 - (% style="color:blue"%)**FirmwareVersion**(%%):0x0100,Means:v1.0.0version290 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 265 265 266 -(% style="color:blue" %)**Frequency Band**: 267 267 268 -0 x01:EU868293 += 2. Configure DDS20-LB to connect to LoRaWAN network = 269 269 270 - 0x02:US915295 +== 2.1 How it works == 271 271 272 -0x03: IN865 273 273 274 -0 x04:AU915298 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 275 275 276 - 0x05:KZ865300 +(% style="display:none" %) (%%) 277 277 278 - 0x06:RU864302 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 279 279 280 -0x07: AS923 281 281 282 - 0x08:AS923-1305 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 283 283 284 - 0x09:AS923-2307 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 285 285 286 - 0x0a:AS923-3309 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 287 287 288 -0x0b: CN470 289 289 290 - 0x0c:EU433312 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 291 291 292 - 0x0d:KR920314 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 293 293 294 - 0x0e:MA869316 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 295 295 296 -(% style="color:blue" %)**Sub-Band**: 297 297 298 - AU915andUS915:value0x00~~0x08319 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 299 299 300 -CN470: value 0x0B ~~ 0x0C 301 301 302 - OtherBands:Always0x00322 +(% style="color:blue" %)**Register the device** 303 303 304 - (% style="color:blue"%)**Battery Info**:324 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 305 305 306 -Check the battery voltage. 307 307 308 - Ex1:0x0B45=2885mV327 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 309 309 310 - Ex2:0x0B49=89mV329 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 311 311 312 312 313 -= ==2.3.2UplinkPayload, FPORT~=2 ===332 +(% style="color:blue" %)**Add APP EUI in the application** 314 314 315 315 316 -((( 317 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 318 -))) 335 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 319 319 320 -((( 321 -Uplink payload includes in total 11 bytes. 322 -))) 323 323 324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 325 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 326 -**Size(bytes)** 327 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 328 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 329 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 330 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 331 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 332 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 333 -[[Message Type>>||anchor="HMessageType"]] 334 -))) 338 +(% style="color:blue" %)**Add APP KEY** 335 335 336 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]340 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 337 337 338 338 339 - ====(% style="color:blue" %)**BatteryInfo**(%%)====343 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 340 340 341 341 342 - Checkthe batteryvoltageforLDS12-LB.346 +Press the button for 5 seconds to activate the DDS20-LB. 343 343 344 - Ex1:0x0B45 =2885mV348 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 345 345 346 - Ex2:0x0B49=2889mV350 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 347 347 348 348 349 -== ==(%style="color:blue" %)**DS18B20 Temperaturesensor**(%%)====353 +== 2.3 Uplink Payload == 350 350 351 351 352 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 356 +((( 357 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 358 +))) 353 353 360 +((( 361 +Uplink payload includes in total 8 bytes. 362 +))) 354 354 355 -**Example**: 364 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 365 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 366 +**Size(bytes)** 367 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 368 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 369 +[[Distance>>||anchor="H2.3.2A0Distance"]] 370 +(unit: mm) 371 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 372 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 373 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 356 356 357 - Ifpayload:0105H: (0105 & FC00==0), temp =0105H0 = 26.1degree375 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 358 358 359 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 360 360 378 +=== 2.3.1 Battery Info === 361 361 362 -==== (% style="color:blue" %)**Distance**(%%) ==== 363 363 381 +Check the battery voltage for DDS20-LB. 364 364 365 - Representsthe distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is0-1200.Inactual use, when the signal strength value Strength.383 +Ex1: 0x0B45 = 2885mV 366 366 385 +Ex2: 0x0B49 = 2889mV 367 367 368 -**Example**: 369 369 370 - Ifthedata you get from the register is 0x0B 0xEA, the distancebetween the sensor and the measured object is 0BEA(H)=3050 (D)/10=305cm.388 +=== 2.3.2 Distance === 371 371 372 372 373 -==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 391 +((( 392 +Get the distance. Flat object range 20mm - 2000mm. 393 +))) 374 374 395 +((( 396 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 375 375 376 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 398 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 399 +))) 377 377 401 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 378 378 379 -* *Example**:403 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 380 380 381 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 382 382 383 -Customers can judge whether they need to adjust the environment based on the signal strength. 384 384 407 +=== 2.3.3 Interrupt Pin === 385 385 386 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 387 387 388 - 389 389 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 390 390 391 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 392 - 393 393 **Example:** 394 394 395 395 0x00: Normal uplink packet. ... ... @@ -397,58 +397,53 @@ 397 397 0x01: Interrupt Uplink Packet. 398 398 399 399 400 -=== =(%style="color:blue"%)**LiDAR temp**(%%)====419 +=== 2.3.4 DS18B20 Temperature sensor === 401 401 402 402 403 - Characterizetheinternaltemperature valueofthesensor.422 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 404 404 405 -**Example: ** 406 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 407 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 424 +**Example**: 408 408 426 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 409 409 410 - ====(% style="color:blue"%)**MessageType**(%%) ====428 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 411 411 412 412 431 +=== 2.3.5 Sensor Flag === 432 + 433 + 413 413 ((( 414 - Fora normal uplink payload, themessagetypeis always0x01.435 +0x01: Detect Ultrasonic Sensor 415 415 ))) 416 416 417 417 ((( 418 - ValidMessage Type:439 +0x00: No Ultrasonic Sensor 419 419 ))) 420 420 421 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 422 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 423 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 424 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 425 425 426 -=== 2.3. 3Decode payload in The Things Network ===443 +=== 2.3.6 Decode payload in The Things Network === 427 427 428 428 429 429 While using TTN network, you can add the payload format to decode the payload. 430 430 431 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 432 432 450 +The payload decoder function for TTN V3 is here: 433 433 434 434 ((( 435 -T hepayloaddecoderfunctionforTTNis here:453 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 436 436 ))) 437 437 438 -((( 439 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 440 -))) 441 441 457 +== 2.4 Uplink Interval == 442 442 443 -== 2.4 Uplink Interval == 444 444 460 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 445 445 446 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 447 447 463 +== 2.5 Show Data in DataCake IoT Server == 448 448 449 -== 2.5 Show Data in DataCake IoT Server == 450 450 451 - 452 452 ((( 453 453 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 454 454 ))) ... ... @@ -471,7 +471,7 @@ 471 471 472 472 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 473 473 474 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**488 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 475 475 476 476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 477 477 ... ... @@ -484,19 +484,19 @@ 484 484 == 2.6 Datalog Feature == 485 485 486 486 487 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.501 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 488 488 489 489 490 490 === 2.6.1 Ways to get datalog via LoRaWAN === 491 491 492 492 493 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.507 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 494 494 495 495 * ((( 496 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.510 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 497 497 ))) 498 498 * ((( 499 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.513 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 500 500 ))) 501 501 502 502 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -507,7 +507,7 @@ 507 507 === 2.6.2 Unix TimeStamp === 508 508 509 509 510 - LDS12-LB uses Unix TimeStamp format based on524 +DDS20-LB uses Unix TimeStamp format based on 511 511 512 512 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 513 513 ... ... @@ -526,7 +526,7 @@ 526 526 527 527 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 528 528 529 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).543 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 530 530 531 531 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 532 532 ... ... @@ -537,7 +537,7 @@ 537 537 Users can poll sensor values based on timestamps. Below is the downlink command. 538 538 539 539 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 540 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**554 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 541 541 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 542 542 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 543 543 ... ... @@ -554,7 +554,7 @@ 554 554 ))) 555 555 556 556 ((( 557 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.571 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 558 558 ))) 559 559 560 560 ... ... @@ -561,101 +561,17 @@ 561 561 == 2.7 Frequency Plans == 562 562 563 563 564 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.578 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 565 565 566 566 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 567 567 568 568 569 -= =2.8LiDAR ToF Measurement==583 += 3. Configure DDS20-LB = 570 570 571 -=== 2.8.1 Principle of Distance Measurement === 572 - 573 - 574 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 575 - 576 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 577 - 578 - 579 -=== 2.8.2 Distance Measurement Characteristics === 580 - 581 - 582 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 583 - 584 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 585 - 586 - 587 -((( 588 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 589 -))) 590 - 591 -((( 592 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 593 -))) 594 - 595 -((( 596 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 597 -))) 598 - 599 - 600 -((( 601 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 602 -))) 603 - 604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 605 - 606 -((( 607 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 608 -))) 609 - 610 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 611 - 612 -((( 613 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 614 -))) 615 - 616 - 617 -=== 2.8.3 Notice of usage === 618 - 619 - 620 -Possible invalid /wrong reading for LiDAR ToF tech: 621 - 622 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 623 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 624 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 625 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 626 - 627 -=== 2.8.4 Reflectivity of different objects === 628 - 629 - 630 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 631 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 632 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 633 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 634 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 635 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 636 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 637 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 638 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 639 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 640 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 641 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 642 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 643 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 644 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 645 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 646 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 647 -Unpolished white metal surface 648 -)))|(% style="width:93px" %)130% 649 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 650 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 651 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 652 - 653 -= 3. Configure LDS12-LB = 654 - 655 655 == 3.1 Configure Methods == 656 656 657 657 658 - LDS12-LB supports below configure method:588 +DDS20-LB supports below configure method: 659 659 660 660 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 661 661 ... ... @@ -663,6 +663,8 @@ 663 663 664 664 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 665 665 596 + 597 + 666 666 == 3.2 General Commands == 667 667 668 668 ... ... @@ -677,10 +677,10 @@ 677 677 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 678 678 679 679 680 -== 3.3 Commands special design for LDS12-LB ==612 +== 3.3 Commands special design for DDS20-LB == 681 681 682 682 683 -These commands only valid for LDS12-LB, as below:615 +These commands only valid for DDS20-LB, as below: 684 684 685 685 686 686 === 3.3.1 Set Transmit Interval Time === ... ... @@ -695,7 +695,7 @@ 695 695 ))) 696 696 697 697 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 698 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**630 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 699 699 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 700 700 30000 701 701 OK ... ... @@ -738,7 +738,7 @@ 738 738 (% style="color:blue" %)**AT Command: AT+INTMOD** 739 739 740 740 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 741 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**673 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 742 742 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 743 743 0 744 744 OK ... ... @@ -762,37 +762,12 @@ 762 762 763 763 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 764 764 765 -=== 3.3.3 Set Power Output Duration === 766 766 767 -Control the output duration 3V3 . Before each sampling, device will 768 768 769 -~1. first enable the power output to external sensor, 770 - 771 -2. keep it on as per duration, read sensor value and construct uplink payload 772 - 773 -3. final, close the power output. 774 - 775 -(% style="color:blue" %)**AT Command: AT+3V3T** 776 - 777 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 778 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 779 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 780 -OK 781 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 782 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 783 - 784 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 785 -Format: Command Code (0x07) followed by 3 bytes. 786 - 787 -The first byte is 01,the second and third bytes are the time to turn on. 788 - 789 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 790 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 791 - 792 792 = 4. Battery & Power Consumption = 793 793 794 794 795 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.702 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 796 796 797 797 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 798 798 ... ... @@ -801,7 +801,7 @@ 801 801 802 802 803 803 (% class="wikigeneratedid" %) 804 -User can change firmware LDS12-LB to:711 +User can change firmware DDS20-LB to: 805 805 806 806 * Change Frequency band/ region. 807 807 ... ... @@ -809,7 +809,7 @@ 809 809 810 810 * Fix bugs. 811 811 812 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**719 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 813 813 814 814 Methods to Update Firmware: 815 815 ... ... @@ -817,40 +817,43 @@ 817 817 818 818 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 819 819 727 + 728 + 820 820 = 6. FAQ = 821 821 822 -== 6.1 What is the frequency plan for LDS12-LB? ==731 +== 6.1 What is the frequency plan for DDS20-LB? == 823 823 824 824 825 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]734 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 826 826 827 827 828 -= 7.Trouble Shooting=737 +== 6.2 Can I use DDS20-LB in condensation environment? == 829 829 830 -== 7.1 AT Command input doesn't work == 831 831 740 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 832 832 833 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 834 834 743 += 7. Trouble Shooting = 835 835 836 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==745 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 837 837 838 838 839 -((( 840 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 841 -))) 748 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 842 842 843 -((( 844 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 845 -))) 846 846 751 +== 7.2 AT Command input doesn't work == 847 847 848 -((( 849 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 850 -))) 851 851 754 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 755 + 756 + 757 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 758 + 759 + 852 852 ((( 853 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 761 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 762 + 763 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 854 854 ))) 855 855 856 856 ... ... @@ -857,7 +857,7 @@ 857 857 = 8. Order Info = 858 858 859 859 860 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**770 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 861 861 862 862 (% style="color:red" %)**XXX**(%%): **The default frequency band** 863 863 ... ... @@ -877,12 +877,14 @@ 877 877 878 878 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 879 879 790 + 791 + 880 880 = 9. Packing Info = 881 881 882 882 883 883 (% style="color:#037691" %)**Package Includes**: 884 884 885 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1797 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 886 886 887 887 (% style="color:#037691" %)**Dimension and weight**: 888 888 ... ... @@ -894,6 +894,8 @@ 894 894 895 895 * Weight / pcs : g 896 896 809 + 810 + 897 897 = 10. Support = 898 898 899 899
- image-20230614153353-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -112.1 KB - Content
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content