Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 22 added, 0 removed)
- 1701149922873-259.png
- 1701152902759-553.png
- 1701152946067-561.png
- 1701155076393-719.png
- 1701155150328-206.png
- 1701155390576-216.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
- image-20231110102635-5.png
- image-20231128133704-1.png
- image-20231128151132-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LDS12-LB-- LoRaWANLiDARToFDistanceSensor User Manual1 +DS20L -- LoRaWAN Smart Distance Detector User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023 0614153353-1.png]]2 +[[image:image-20231110085342-2.png||height="481" width="481"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,176 +18,66 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDARToFDistanceSensor ==22 +== 1.1 What is LoRaWAN Smart Distance Detector == 22 22 23 23 24 -The Dragino LDS12-LB is a(% style="color:blue" %)**LoRaWANLiDARToF(Time of Flight)DistanceSensor**(%%)forInternetofThings solution. Itis capabletomeasure the distance toan objectas closeas 10centimeters(+/- 5cm up to 6m) andas far as 12 meters(+/-1%startingat6m)!.TheLiDAR probeuseslaser inductiontechnologyfordistancemeasurement.25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm. 25 25 26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 27 28 - Itdetects thedistance betweenthemeasuredobject andthe sensor,anduploadsthevalue viawirelesstoLoRaWANIoTServer.30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.** 29 29 30 - TheLoRawirelesstechnologyused in LDS12-LB allowsdevice tosend data and reachextremelyngrangesatlowdata-rates.Itprovides ultra-long range spread spectrum communicationandhigh interferenceimmunity whilstminimizing currentconsumption.32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 31 31 32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 - LDS12-LB ispowered by (% style="color:blue" %)**8500mAh Li-SOCI2battery**(%%),it isdesigned for longterm use up to 5 years.35 +[[image:image-20231110102635-5.png||height="402" width="807"]] 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-20230615152941-1.png||height="459" width="800"]] 39 - 40 - 41 41 == 1.2 Features == 42 42 43 43 44 -* LoRaWAN 1.0.3 Class A 45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 -* Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 51 -* Support Bluetooth v5.1 and LoRaWAN remote configure 52 -* Support wireless OTA update firmware 41 +* LoRaWAN Class A protocol 42 +* LiDAR distance detector, range 3 ~~ 200cm 43 +* Periodically detect or continuously detect mode 53 53 * AT Commands to change parameters 54 -* Downlink to change configure 55 -* 8500mAh Battery for long term use 45 +* Remotely configure parameters via LoRaWAN Downlink 46 +* Alarm & Counting mode 47 +* Firmware upgradable via program port or LoRa protocol 48 +* Built-in 2400mAh battery or power by external power source 56 56 57 - 58 - 59 59 == 1.3 Specification == 60 60 61 61 62 -(% style="color:#037691" %)** CommonDCCharacteristics:**53 +(% style="color:#037691" %)**LiDAR Sensor:** 63 63 64 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 65 -* Operating Temperature: -40 ~~ 85°C 55 +* Operation Temperature: -40 ~~ 80 °C 56 +* Operation Humidity: 0~~99.9%RH (no Dew) 57 +* Storage Temperature: -10 ~~ 45°C 58 +* Measure Range: 3cm~~200cm @ 90% reflectivity 59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 +* ToF FoV: ±9°, Total 18° 61 +* Light source: VCSEL 66 66 67 - (% style="color:#037691"%)**ProbeSpecification:**63 +== 1.4 Power Consumption == 68 68 69 -* Storage temperature:-20℃~~75℃ 70 -* Operating temperature : -20℃~~60℃ 71 -* Measure Distance: 72 -** 0.1m ~~ 12m @ 90% Reflectivity 73 -** 0.1m ~~ 4m @ 10% Reflectivity 74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution : 5mm 76 -* Ambient light immunity : 70klux 77 -* Enclosure rating : IP65 78 -* Light source : LED 79 -* Central wavelength : 850nm 80 -* FOV : 3.6° 81 -* Material of enclosure : ABS+PC 82 -* Wire length : 25cm 83 83 84 -(% style="color:#037691" %)** LoRaSpec:**66 +(% style="color:#037691" %)**Battery Power Mode:** 85 85 86 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 87 -* Max +22 dBm constant RF output vs. 88 -* RX sensitivity: down to -139 dBm. 89 -* Excellent blocking immunity 68 +* Idle: 0.003 mA @ 3.3v 69 +* Max : 360 mA 90 90 91 -(% style="color:#037691" %)** Battery:**71 +(% style="color:#037691" %)**Continuously mode**: 92 92 93 -* Li/SOCI2 un-chargeable battery 94 -* Capacity: 8500mAh 95 -* Self-Discharge: <1% / Year @ 25°C 96 -* Max continuously current: 130mA 97 -* Max boost current: 2A, 1 second 73 +* Idle: 21 mA @ 3.3v 74 +* Max : 360 mA 98 98 99 - (% style="color:#037691"%)**PowerConsumption**76 += 2. Configure DS20L to connect to LoRaWAN network = 100 100 101 -* Sleep Mode: 5uA @ 3.3v 102 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 103 - 104 - 105 - 106 -== 1.4 Applications == 107 - 108 - 109 -* Horizontal distance measurement 110 -* Parking management system 111 -* Object proximity and presence detection 112 -* Intelligent trash can management system 113 -* Robot obstacle avoidance 114 -* Automatic control 115 -* Sewer 116 - 117 - 118 - 119 -(% style="display:none" %) 120 - 121 -== 1.5 Sleep mode and working mode == 122 - 123 - 124 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 125 - 126 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 127 - 128 - 129 -== 1.6 Button & LEDs == 130 - 131 - 132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 133 - 134 - 135 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 137 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 140 -))) 141 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 142 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 143 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 144 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 145 -))) 146 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 147 - 148 -== 1.7 BLE connection == 149 - 150 - 151 -LDS12-LB support BLE remote configure. 152 - 153 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 154 - 155 -* Press button to send an uplink 156 -* Press button to active device. 157 -* Device Power on or reset. 158 - 159 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 160 - 161 - 162 -== 1.8 Pin Definitions == 163 - 164 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 165 - 166 - 167 -== 1.9 Mechanical == 168 - 169 - 170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 171 - 172 - 173 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 174 - 175 - 176 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 177 - 178 - 179 -(% style="color:blue" %)**Probe Mechanical:** 180 - 181 - 182 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 183 - 184 - 185 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 186 - 187 187 == 2.1 How it works == 188 188 189 189 190 -The LDS12-LBis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate theLDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 191 191 192 192 (% style="display:none" %) (%%) 193 193 ... ... @@ -196,15 +196,14 @@ 196 196 197 197 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 198 198 199 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %) 200 200 201 -[[image:image-2023 0615153004-2.png||height="459" width="800"]](% style="display:none" %)92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %) 202 202 94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 203 203 204 - (% style="color:blue"%)**Step1:**(%%)Createadevicein TTNwith theOTAAkeysfrom LDS12-LB.96 +Each DS20L is shipped with a sticker with the default device EUI as below: 205 205 206 -Each LDS12-LB is shipped with a sticker with the default device EUI as below: 207 - 208 208 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 209 209 210 210 ... ... @@ -232,10 +232,11 @@ 232 232 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 233 233 234 234 235 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L 236 236 127 +[[image:image-20231128133704-1.png||height="189" width="441"]] 237 237 238 -Press the button for 5 seconds to activate the LDS12-LB.129 +Press the button for 5 seconds to activate the DS20L. 239 239 240 240 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 241 241 ... ... @@ -247,7 +247,7 @@ 247 247 === 2.3.1 Device Status, FPORT~=5 === 248 248 249 249 250 -Users can use the downlink command(**0x26 01**) to ask LDS12-LBto send device configure detail, include device configure status.LDS12-LBwill uplink a payload via FPort=5 to server.141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server. 251 251 252 252 The Payload format is as below. 253 253 ... ... @@ -259,8 +259,10 @@ 259 259 260 260 Example parse in TTNv3 261 261 262 - (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24153 +[[image:1701149922873-259.png]] 263 263 155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21 156 + 264 264 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 265 265 266 266 (% style="color:blue" %)**Frequency Band**: ... ... @@ -313,349 +313,265 @@ 313 313 === 2.3.2 Uplink Payload, FPORT~=2 === 314 314 315 315 316 -((( 317 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 318 -))) 209 +==== (% style="color:red" %)**MOD~=1**(%%) ==== 319 319 320 -((( 321 -Uplink payload includes in total 11 bytes. 322 -))) 211 +Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts. 323 323 213 +Uplink Payload totals 10 bytes. 214 + 324 324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 325 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 326 -**Size(bytes)** 327 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 328 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 329 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 330 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 331 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 332 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 333 -[[Message Type>>||anchor="HMessageType"]] 334 -))) 216 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4** 217 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count 335 335 336 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]219 +[[image:1701155076393-719.png]] 337 337 221 +(% style="color:blue" %)**Battery Info:** 338 338 339 - ====(% style="color:blue"%)**BatteryInfo**(%%)====223 +Check the battery voltage for DS20L 340 340 225 +Ex1: 0x0E10 = 3600mV 341 341 342 -Check the battery voltage for LDS12-LB. 343 343 344 - Ex1:0x0B45=2885mV228 +(% style="color:blue" %)**MOD & Alarm & Interrupt:** 345 345 346 - Ex2:0x0B49=2889mV230 +(% style="color:red" %)**MOD:** 347 347 232 +**Example: ** (0x60>>6) & 0x3f =1 348 348 349 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 234 +**0x01:** Regularly detect distance and report. 235 +**0x02: ** Uninterrupted measurement (external power supply). 350 350 237 +(% style="color:red" %)**Alarm:** 351 351 352 - Thisisoptional,user canonnectexternal DS18B20 sensorto the+3.3v,1-wire and GND pin .andthisfieldwillreport temperature.239 +When the detection distance exceeds the limit, the alarm flag is set to 1. 353 353 241 +(% style="color:red" %)**Interrupt:** 354 354 355 - **Example**:243 +Whether it is an external interrupt. 356 356 357 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 358 358 359 - Ifpayload is:FF3FH : (FF3F & FC00 == 1),temp= (FF3FH - 65536)/10 = -19.3 degrees.246 +(% style="color:blue" %)**Distance info:** 360 360 361 - 362 -==== (% style="color:blue" %)**Distance**(%%) ==== 363 - 364 - 365 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 366 - 367 - 368 368 **Example**: 369 369 370 -If the datayouget from the registeris0x0B0xEA, thedistancebetweenthe sensor and the measured object is0BEA(H)=3050 (D)/10= 305cm.250 +If payload is: 0708H: distance = 0708H = 1800 mm 371 371 372 372 373 - ====(% style="color:blue" %)**Distancesignalstrength**(%%) ====253 +(% style="color:blue" %)**Sensor State:** 374 374 255 +Ex1: 0x00: Normal collection distance 375 375 376 - Refersto the signal strength, the default output value will be between0-65535. When the distance measurement gear is fixed,the farther the distancemeasurement is, the lower the signalstrength; thelower the target reflectivity, the lower the signalstrength. When Strengthisgreater than 100 and not equal to 65535, the measured value of Dist is considered credible.257 +Ex2 0x0x: Distance collection is wrong 377 377 378 378 379 - **Example**:260 +(% style="color:blue" %)**Interript Count:** 380 380 381 -If payload is: 1D7(H)=471(D),distance signal strength=471,471>100,471≠65535, the measured value ofDistis considered credible.262 +If payload is:000007D0H: count = 07D0H =2000 382 382 383 -Customers can judge whether they need to adjust the environment based on the signal strength. 384 384 385 385 386 -==== (% style="color: blue" %)**Interrupt Pin & Interrupt Level**(%%) ====266 +==== (% style="color:red" %)**MOD~=2**(%%)** ** ==== 387 387 268 +Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes. 388 388 389 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 270 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 271 +|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2** 272 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit 390 390 391 - Note: The Internet Pin is a separate pin in the screw terminal. See[[pinmapping>>||anchor="H1.8PinDefinitions"]].274 +[[image:1701155150328-206.png]] 392 392 393 -** Example:**276 +(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:** 394 394 395 - 0x00:Normaluplink packet.278 +(% style="color:red" %)**MOD:** 396 396 397 -0x0 1:InterruptUplinkPacket.280 +**Example: ** (0x60>>6) & 0x3f =1 398 398 282 +**0x01:** Regularly detect distance and report. 283 +**0x02: ** Uninterrupted measurement (external power supply). 399 399 400 - ====(% style="color:blue" %)**LiDAR temp**(%%) ====285 +(% style="color:red" %)**Alarm:** 401 401 287 +When the detection distance exceeds the limit, the alarm flag is set to 1. 402 402 403 - Characterizethe internaltemperaturevalueof the sensor.289 +(% style="color:red" %)**Do:** 404 404 405 -**Example: ** 406 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 407 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 291 +When the distance exceeds the set threshold, pull the Do pin high. 408 408 293 +(% style="color:red" %)**Limit flag:** 409 409 410 - ====(%style="color:blue"%)**Message Type**(%%) ====295 +Mode for setting threshold: 0~~5 411 411 297 +0: does not use upper and lower limits 412 412 413 -((( 414 -For a normal uplink payload, the message type is always 0x01. 415 -))) 299 +1: Use upper and lower limits 416 416 417 -((( 418 -Valid Message Type: 419 -))) 301 +2: is less than the lower limit value 420 420 421 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 422 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 423 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 424 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 303 +3: is greater than the lower limit value 425 425 426 - ===2.3.3 DecodepayloadinTheThings Network===305 +4: is less than the upper limit 427 427 307 +5: is greater than the upper limit 428 428 429 -While using TTN network, you can add the payload format to decode the payload. 430 430 431 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]310 +(% style="color:blue" %)**Upper limit:** 432 432 312 +The upper limit of the threshold cannot exceed 2000mm. 433 433 434 -((( 435 -The payload decoder function for TTN is here: 436 -))) 437 437 438 -((( 439 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 440 -))) 315 +(% style="color:blue" %)**Lower limit:** 441 441 317 +The lower limit of the threshold cannot be less than 3mm. 442 442 443 -== 2.4 Uplink Interval == 444 444 320 +=== 2.3.3 Historical measuring distance, FPORT~=3 === 445 445 446 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 447 447 323 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 448 448 449 - ==2.5 ShowData inDataCakeIoTServer==325 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 450 450 327 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 328 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 329 +**Size(bytes)** 330 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 331 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 332 +Reserve(0xFF) 333 +)))|Distance|Distance signal strength|(% style="width:88px" %)((( 334 +LiDAR temp 335 +)))|(% style="width:85px" %)Unix TimeStamp 451 451 452 -((( 453 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 454 -))) 337 +**Interrupt flag & Interrupt level:** 455 455 456 - 457 -((( 458 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 339 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 340 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 341 +**Size(bit)** 342 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 343 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 344 +Interrupt flag 459 459 ))) 460 460 461 -((( 462 - (%style="color:blue"%)**Step2**(%%)**:Toconfigurethe Application toforwarddata toDATACAKEyouwillneed toaddintegration.To addtheDATACAKE integration,perform thefollowingsteps:**347 +* ((( 348 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands. 463 463 ))) 464 464 351 +For example, in the US915 band, the max payload for different DR is: 465 465 466 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]353 +**a) DR0:** max is 11 bytes so one entry of data 467 467 355 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 468 468 469 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]357 +**c) DR2:** total payload includes 11 entries of data 470 470 359 +**d) DR3:** total payload includes 22 entries of data. 471 471 472 - (%style="color:blue" %)**Step3**(%%)**: Create an account orlog inDatacake.**361 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0 473 473 474 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 475 475 476 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]364 +**Downlink:** 477 477 366 +0x31 64 CC 68 0C 64 CC 69 74 05 478 478 479 - Afteradded, thesensor data arrive TTN V3,itwill also arrive andshow in Datacake.368 +[[image:image-20230805144936-2.png||height="113" width="746"]] 480 480 481 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]370 +**Uplink:** 482 482 372 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 483 483 484 -== 2.6 Datalog Feature == 485 485 375 +**Parsed Value:** 486 486 487 -D atalogFeatureis to ensureIoTerver can get all sampling data fromSensor even if theLoRaWANnetworkis down.Foreach sampling,LDS12-LB will store the reading for future retrieving purposes.377 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 488 488 489 489 490 - === 2.6.1Ways togetdatalog via LoRaWAN ===380 +[360,176,30,High,True,2023-08-04 02:53:00], 491 491 382 +[355,168,30,Low,False,2023-08-04 02:53:29], 492 492 493 - Set PNACKMD=1,LDS12-LB will wait for ACK for every uplink,when there is no LoRaWAN network,LDS12-LB will mark these recordswith non-ack messages and store the sensor data,nd it willsend all messages (10sinterval) after the network recovery.384 +[245,211,30,Low,False,2023-08-04 02:54:29], 494 494 495 -* ((( 496 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 497 -))) 498 -* ((( 499 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 500 -))) 386 +[57,700,30,Low,False,2023-08-04 02:55:29], 501 501 502 - Belowis the typical case forthe auto-updatedatalog feature (Set PNACKMD=1)388 +[361,164,30,Low,True,2023-08-04 02:56:00], 503 503 504 -[ [image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]390 +[337,184,30,Low,False,2023-08-04 02:56:40], 505 505 392 +[20,4458,30,Low,False,2023-08-04 02:57:40], 506 506 507 - === 2.6.2Unix TimeStamp===394 +[362,173,30,Low,False,2023-08-04 02:58:53], 508 508 509 509 510 - LDS12-LB usesUnix TimeStampformatbasedon397 +**History read from serial port:** 511 511 512 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]399 +[[image:image-20230805145056-3.png]] 513 513 514 -User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 515 515 516 - Belowistheconverterexample402 +=== 2.3.4 Decode payload in The Things Network === 517 517 518 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 519 519 405 +While using TTN network, you can add the payload format to decode the payload. 520 520 521 - So, wecanuse AT+TIMESTAMP=1611889405ordownlink 3060137afd00toetthecurrent time021– Jan ~-~- 29 Friday 03:03:25407 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 522 522 523 523 524 -=== 2.6.3 Set Device Time === 525 - 526 - 527 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 528 - 529 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 530 - 531 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 532 - 533 - 534 -=== 2.6.4 Poll sensor value === 535 - 536 - 537 -Users can poll sensor values based on timestamps. Below is the downlink command. 538 - 539 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 540 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 541 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 542 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 543 - 544 544 ((( 545 -T imestampstartandTimestamp end-useUnix TimeStamp formatas mentionedabove. Devices willreplywithall data logs during thisperiod, using theuplink interval.411 +The payload decoder function for TTN is here: 546 546 ))) 547 547 548 548 ((( 549 - Forexample, downlinkcommand[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]415 +DS20L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 550 550 ))) 551 551 552 -((( 553 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 554 -))) 555 555 556 -((( 557 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 558 -))) 419 +== 2.4 Show Data in DataCake IoT Server == 559 559 560 560 561 -== 2.7 Frequency Plans == 562 - 563 - 564 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 565 - 566 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 567 - 568 - 569 -== 2.8 LiDAR ToF Measurement == 570 - 571 -=== 2.8.1 Principle of Distance Measurement === 572 - 573 - 574 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 575 - 576 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 577 - 578 - 579 -=== 2.8.2 Distance Measurement Characteristics === 580 - 581 - 582 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 583 - 584 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 585 - 586 - 587 587 ((( 588 - (%style="color:blue"%)**①**(%%)Represents thedetectionblindzoneofTheLiDARprobe,0-10cm,withinwhichtheoutput data is unreliable.423 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 589 589 ))) 590 590 426 + 591 591 ((( 592 -(% style="color:blue" %)** ②**(%%)Representsthe operatingrangeof TheLiDARprobe detecting blacktargetwith10% reflectivity,0.1-5m.428 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 593 593 ))) 594 594 595 595 ((( 596 -(% style="color:blue" %)** ③**(%%)RepresentstheoperatingrangeofThe LiDARprobe detectingwhite targetwith90%reflectivity,0.1-12m.432 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 597 597 ))) 598 598 599 599 600 -((( 601 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 602 -))) 436 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 603 603 604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 605 605 606 -((( 607 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 608 -))) 439 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]] 609 609 610 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 611 611 612 -((( 613 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 614 -))) 442 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 615 615 444 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.** 616 616 617 - === 2.8.3Noticef usage=446 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 618 618 619 619 620 - Possible invalid/wrongreadingforLiDARToFtech:449 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 621 621 622 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 623 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 624 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 625 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 451 +[[image:1701152946067-561.png]] 626 626 627 -=== 2.8.4 Reflectivity of different objects === 628 628 454 +== 2.5 Frequency Plans == 629 629 630 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 631 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 632 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 633 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 634 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 635 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 636 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 637 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 638 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 639 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 640 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 641 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 642 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 643 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 644 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 645 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 646 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 647 -Unpolished white metal surface 648 -)))|(% style="width:93px" %)130% 649 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 650 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 651 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 652 652 653 - =3.ConfigureLDS12-LB=457 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 654 654 459 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 460 + 461 + 462 += 3. Configure DS20L = 463 + 655 655 == 3.1 Configure Methods == 656 656 657 657 658 - LDS12-LBsupports below configure method:467 +DS20L supports below configure method: 659 659 660 660 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 661 661 ... ... @@ -677,10 +677,10 @@ 677 677 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 678 678 679 679 680 -== 3.3 Commands special design for LDS12-LB==489 +== 3.3 Commands special design for DS20L == 681 681 682 682 683 -These commands only valid for LDS12-LB, as below:492 +These commands only valid for DS20L, as below: 684 684 685 685 686 686 === 3.3.1 Set Transmit Interval Time === ... ... @@ -722,18 +722,15 @@ 722 722 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 723 723 ))) 724 724 * ((( 725 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 726 - 727 - 728 - 534 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 729 729 ))) 730 730 731 731 === 3.3.2 Set Interrupt Mode === 732 732 733 733 734 -Feature, Set Interrupt mode for PA8ofpin.540 +Feature, Set Interrupt mode for pin of GPIO_EXTI. 735 735 736 -When AT+INTMOD=0 is set, P A8is used as a digital input port.542 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port. 737 737 738 738 (% style="color:blue" %)**AT Command: AT+INTMOD** 739 739 ... ... @@ -744,7 +744,11 @@ 744 744 OK 745 745 the mode is 0 =Disable Interrupt 746 746 ))) 747 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 553 +|(% style="width:154px" %)((( 554 +AT+INTMOD=3 555 + 556 +(default) 557 +)))|(% style="width:196px" %)((( 748 748 Set Transmit Interval 749 749 0. (Disable Interrupt), 750 750 ~1. (Trigger by rising and falling edge) ... ... @@ -762,37 +762,83 @@ 762 762 763 763 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 764 764 765 -== =3.3.3PowerOutput Duration===575 +== 3.3.3 Set work mode == 766 766 767 -Control the output duration 3V3 . Before each sampling, device will 768 768 769 - ~1. firstenable thepoweroutput to externalsensor,578 +Feature: Switch working mode 770 770 771 - 2.keep it on asper duration, read sensorvalueandconstruct uplink payload580 +(% style="color:blue" %)**AT Command: AT+MOD** 772 772 773 -3. final, close the power output. 582 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 583 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response** 584 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 585 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 586 +OK 587 +Attention:Take effect after ATZ 588 +))) 774 774 775 -(% style="color:blue" %)** ATCommand:AT+3V3T**590 +(% style="color:blue" %)**Downlink Command:** 776 776 592 +* **Example: **0x0A00 ~/~/ Same as AT+MOD=0 593 + 594 +* **Example:** 0x0A01 ~/~/ Same as AT+MOD=1 595 + 596 +=== 3.3.4 Set threshold and threshold mode === 597 + 598 + 599 +Feature, Set threshold and threshold mode 600 + 601 +When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms. 602 + 603 +(% style="color:blue" %)**AT Command: AT+DOL** 604 + 777 777 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 778 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 779 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 606 +|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response** 607 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 608 +0,0,0,0,400 780 780 OK 781 - |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK782 -|(% style="width:1 54px" %)AT+3V3T=0|(% style="width:196px" %)Alwaysturnon the power supplyof 3V3 pin.|(% style="width:157px" %)OK610 +))) 611 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK 783 783 784 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 785 -Format: Command Code (0x07) followed by 3 bytes. 786 786 787 -The first byte is 01,the second and third bytes are the time to turn on. 614 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 615 +|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits 616 +|(% style="width:251px" %)1: Use upper and lower limits 617 +|(% style="width:251px" %)2: Less than the lower limit 618 +|(% style="width:251px" %)3: Greater than the lower limit 619 +|(% style="width:251px" %)4: Less than the upper limit 620 +|(% style="width:251px" %)5: Greater than the upper limit 621 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 622 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 623 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 624 +|(% style="width:251px" %)1 Person or object counting statistics 625 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 626 +0~~10000ms 788 788 789 - *Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0790 - * Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500628 + 629 +))) 791 791 631 +(% style="color:blue" %)**Downlink Command: 0x07** 632 + 633 +Format: Command Code (0x07) followed by 9bytes. 634 + 635 +* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 636 + 637 +* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 638 + 639 +* Example 2: Downlink Payload: 070200000064000190 **~-~-->** AT+MOD=2,0,100,0,400 640 + 641 +* Example 3: Downlink Payload: 0703200000064000190 **~-~-->** AT+MOD=3,1800,100,0,400 642 + 643 +* Example 4: Downlink Payload: 070407080000000190 **~-~-->** AT+MOD=4,0,100,0,400 644 + 645 +* Example 5: Downlink Payload: 070507080000000190 **~-~-->** AT+MOD=5,1800,100,0,400 646 + 647 + 792 792 = 4. Battery & Power Consumption = 793 793 794 794 795 - LDS12-LBuseER26500+SPC1520battery pack. See below link for detail information about the battery info and how to replace.651 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace. 796 796 797 797 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 798 798 ... ... @@ -801,7 +801,7 @@ 801 801 802 802 803 803 (% class="wikigeneratedid" %) 804 -User can change firmware LDS12-LBto:660 +User can change firmware DS20L to: 805 805 806 806 * Change Frequency band/ region. 807 807 ... ... @@ -809,7 +809,7 @@ 809 809 810 810 * Fix bugs. 811 811 812 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**668 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]** 813 813 814 814 Methods to Update Firmware: 815 815 ... ... @@ -819,12 +819,39 @@ 819 819 820 820 = 6. FAQ = 821 821 822 -== 6.1 What is the frequency plan for LDS12-LB? ==678 +== 6.1 What is the frequency plan for DS20L? == 823 823 824 824 825 - LDS12-LBuse the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]681 +DS20L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 826 826 827 827 684 +== 6.2 DS20L programming line == 685 + 686 + 687 +缺图 后续补上 688 + 689 +feature: 690 + 691 +for AT commands 692 + 693 +Update the firmware of DS20L 694 + 695 +Support interrupt mode 696 + 697 + 698 +== 6.3 LiDAR probe position == 699 + 700 + 701 +[[image:1701155390576-216.png||height="285" width="307"]] 702 + 703 +The black oval hole in the picture is the LiDAR probe. 704 + 705 + 706 +== 6.4 Interface definition == 707 + 708 +[[image:image-20231128151132-2.png||height="305" width="557"]] 709 + 710 + 828 828 = 7. Trouble Shooting = 829 829 830 830 == 7.1 AT Command input doesn't work == ... ... @@ -857,7 +857,7 @@ 857 857 = 8. Order Info = 858 858 859 859 860 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**743 +Part Number: (% style="color:blue" %)**DS20L-XXX** 861 861 862 862 (% style="color:red" %)**XXX**(%%): **The default frequency band** 863 863 ... ... @@ -882,7 +882,7 @@ 882 882 883 883 (% style="color:#037691" %)**Package Includes**: 884 884 885 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1768 +* DS20L LoRaWAN Smart Distance Detector x 1 886 886 887 887 (% style="color:#037691" %)**Dimension and weight**: 888 888
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.5 KB - Content
- 1701152902759-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.2 KB - Content
- 1701152946067-561.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.2 KB - Content
- 1701155076393-719.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.6 KB - Content
- 1701155150328-206.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.6 KB - Content
- 1701155390576-216.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +293.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +190.6 KB - Content
- image-20231128151132-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +281.2 KB - Content