Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Content
-
... ... @@ -21,21 +21,21 @@ 21 21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 22 22 23 23 24 -The Dragino LDS12 -LBis a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.24 +The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 25 25 26 -The LDS12 -LBcan be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.26 +The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 27 27 28 28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 29 29 30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.30 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 31 32 - LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.32 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 - LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.34 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.36 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]38 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,16 +44,19 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 47 +* Liquid Level Measurement by Ultrasonic technology 48 +* Measure through container, No need to contact Liquid 49 +* Valid level range 20mm - 2000mm 50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 51 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 56 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 59 + 57 57 == 1.3 Specification == 58 58 59 59 ... ... @@ -62,23 +62,6 @@ 62 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 63 * Operating Temperature: -40 ~~ 85°C 64 64 65 -(% style="color:#037691" %)**Probe Specification:** 66 - 67 -* Storage temperature:-20℃~~75℃ 68 -* Operating temperature : -20℃~~60℃ 69 -* Measure Distance: 70 -** 0.1m ~~ 12m @ 90% Reflectivity 71 -** 0.1m ~~ 4m @ 10% Reflectivity 72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution : 5mm 74 -* Ambient light immunity : 70klux 75 -* Enclosure rating : IP65 76 -* Light source : LED 77 -* Central wavelength : 850nm 78 -* FOV : 3.6° 79 -* Material of enclosure : ABS+PC 80 -* Wire length : 25cm 81 - 82 82 (% style="color:#037691" %)**LoRa Spec:** 83 83 84 84 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -99,291 +99,322 @@ 99 99 * Sleep Mode: 5uA @ 3.3v 100 100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 101 102 -== 1.4 Applications == 103 103 89 +== 1.4 Suitable Container & Liquid == 104 104 105 -* Horizontal distance measurement 106 -* Parking management system 107 -* Object proximity and presence detection 108 -* Intelligent trash can management system 109 -* Robot obstacle avoidance 110 -* Automatic control 111 -* Sewer 112 112 113 -(% style="display:none" %) 92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 93 +* Container shape is regular, and surface is smooth. 94 +* Container Thickness: 95 +** Pure metal material. 2~~8mm, best is 3~~5mm 96 +** Pure non metal material: <10 mm 97 +* Pure liquid without irregular deposition. 114 114 115 -== 1.5 Sleep mode and working mode == 116 116 100 +(% style="display:none" %) 117 117 118 - (%style="color:blue"%)**DeepSleep Mode: **(%%)Sensor doesn't have anyLoRaWANactivate. This mode is used for storage and shipping to save battery life.102 +== 1.5 Install DDS20-LB == 119 119 120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 121 121 105 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 122 122 123 -= =1.6Button&LEDs==107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 124 124 109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 125 125 126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 127 127 112 +((( 113 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 114 +))) 128 128 129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 116 +((( 117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 134 134 ))) 135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 139 -))) 140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 141 142 - ==1.7 BLE connection ==120 +[[image:image-20230613143052-5.png]] 143 143 144 144 145 - LDS12-LBsupportBLEremote configure.123 +No polish needed if the container is shine metal surface without paint or non-metal container. 146 146 147 - BLE can beused to configuretheparameter of sensor or see the console output from sensor. BLE will be only activate on below case:125 +[[image:image-20230613143125-6.png]] 148 148 149 -* Press button to send an uplink 150 -* Press button to active device. 151 -* Device Power on or reset. 152 152 153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 128 +((( 129 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 130 +))) 154 154 132 +((( 133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 134 +))) 155 155 156 -== 1.8 Pin Definitions == 136 +((( 137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 138 +))) 157 157 158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 140 +((( 141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 142 +))) 159 159 160 160 161 -== 1.9 Mechanical == 145 +((( 146 +(% style="color:blue" %)**LED Status:** 147 +))) 162 162 149 +* ((( 150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 151 +))) 163 163 164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 153 +* ((( 154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 155 +))) 156 +* ((( 157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 158 +))) 165 165 160 +((( 161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 162 +))) 166 166 167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 168 168 165 +((( 166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 167 +))) 169 169 170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 171 171 170 +((( 171 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 172 +))) 172 172 173 -(% style="color:blue" %)**Probe Mechanical:** 174 +((( 175 +Prepare Eproxy AB glue. 176 +))) 174 174 178 +((( 179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 180 +))) 175 175 176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 182 +((( 183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 184 +))) 177 177 186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 178 178 179 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 180 180 181 -== 2.1 How it works == 189 +((( 190 +(% style="color:red" %)**Note :** 182 182 192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 193 +))) 183 183 184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 195 +((( 196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 197 +))) 185 185 186 -(% style="display:none" %) (%%) 187 187 188 -== 2.2Quick guidetoconnect to LoRaWANserver(OTAA)==200 +== 1.6 Applications == 189 189 190 190 191 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Belowis the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]asa LoRaWAN gatewayinthis example.203 +* Smart liquid control solution 192 192 193 - TheLPS8v2 isalready setto connectedto[[TTN network >>url:https://console.cloud.thethings.network/]], so what weneed to now is configure the TTN server.205 +* Smart liquefied gas solution 194 194 195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 196 196 208 +== 1.7 Precautions == 197 197 198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 199 199 200 - EachLDS12-LBisshippedwith a stickerwiththe default deviceEUIasbelow:211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 201 201 202 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 203 203 215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 204 204 205 - Youcan enter thiskeyinthe LoRaWAN Serverportal.Below is TTN screen shot:217 +(% style="display:none" %) 206 206 219 +== 1.8 Sleep mode and working mode == 207 207 208 -(% style="color:blue" %)**Register the device** 209 209 210 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]222 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 211 211 224 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 212 212 213 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 214 214 215 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]227 +== 1.9 Button & LEDs == 216 216 217 217 218 - (%style="color:blue"%)**AddAPPEUI intheplication**230 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 219 219 220 220 221 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 235 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 236 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 237 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 238 +))) 239 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 240 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 241 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 242 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 243 +))) 244 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 222 222 223 223 224 - (% style="color:blue"%)**Add APP KEY**247 +== 1.10 BLE connection == 225 225 226 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 227 227 250 +DDS20-LB support BLE remote configure. 228 228 229 - (%style="color:blue"%)**Step2:**(%%)Activate onLDS12-LB252 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 230 230 254 +* Press button to send an uplink 255 +* Press button to active device. 256 +* Device Power on or reset. 231 231 232 - Pressthebuttonfor5secondstoactivate theLDS12-LB.258 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 233 233 234 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 235 235 236 - Afterjoinsuccess,it will start toupload messages to TTN and you canseethe messages in the panel.261 +== 1.11 Pin Definitions == 237 237 263 +[[image:image-20230523174230-1.png]] 238 238 239 -== 2.3 Uplink Payload == 240 240 241 -== =2.3.1Device Status,FPORT~=5===266 +== 1.12 Mechanical == 242 242 243 243 244 -User scansethe downlinkcommand(**0x2601**) toaskLDS12-LBtosend device configure detail, includedevice configurestatus. LDS12-LB will uplinkapayload via FPort=5 to server.269 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 245 245 246 -The Payload format is as below. 247 247 248 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 249 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 250 -**Size(bytes)** 251 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 252 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 272 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 253 253 254 -Example parse in TTNv3 255 255 256 - (% style="color:blue" %)**Sensor Model**(%%):For LDS12-LB,thisvalueis0x24275 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 257 257 258 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 259 259 260 -(% style="color:blue" %)** Frequency Band**:278 +(% style="color:blue" %)**Probe Mechanical:** 261 261 262 - 0x01:EU868280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 263 263 264 -0x02: US915 265 265 266 - 0x03: IN865283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 267 267 268 -0x04: AU915 269 269 270 -0 x05:KZ865286 += 2. Configure DDS20-LB to connect to LoRaWAN network = 271 271 272 - 0x06:RU864288 +== 2.1 How it works == 273 273 274 -0x07: AS923 275 275 276 -0 x08: AS923-1291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 277 277 278 - 0x09:AS923-2293 +(% style="display:none" %) (%%) 279 279 280 - 0x0a:AS923-3295 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 281 281 282 -0x0b: CN470 283 283 284 - 0x0c:EU433298 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 285 285 286 - 0x0d:KR920300 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 287 287 288 -0 x0e:MA869302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 289 289 290 -(% style="color:blue" %)**Sub-Band**: 291 291 292 - AU915andUS915:value0x00~~0x08305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 293 293 294 - CN470:value0x0B~~0x0C307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 295 295 296 - Other Bands: Always0x00309 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 297 297 298 -(% style="color:blue" %)**Battery Info**: 299 299 300 - Check thebatteryvoltage.312 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 301 301 302 -Ex1: 0x0B45 = 2885mV 303 303 304 - Ex2:0x0B49=2889mV315 +(% style="color:blue" %)**Register the device** 305 305 317 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 306 306 307 -=== 2.3.2 Uplink Payload, FPORT~=2 === 308 308 320 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 309 309 310 -((( 311 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 312 -))) 322 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 313 313 314 -((( 315 -Uplink payload includes in total 11 bytes. 316 -))) 317 317 318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 319 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 320 -**Size(bytes)** 321 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 322 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 323 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 324 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 325 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 326 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 327 -[[Message Type>>||anchor="HMessageType"]] 328 -))) 325 +(% style="color:blue" %)**Add APP EUI in the application** 329 329 330 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 331 331 328 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 332 332 333 -==== (% style="color:blue" %)**Battery Info**(%%) ==== 334 334 331 +(% style="color:blue" %)**Add APP KEY** 335 335 336 - Check the battery voltageDS12-LB.333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 337 337 338 -Ex1: 0x0B45 = 2885mV 339 339 340 - Ex2:0x0B49=2889mV336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 341 341 342 342 343 - ==== (%style="color:blue"%)**DS18B20Temperaturesensor**(%%)====339 +Press the button for 5 seconds to activate the DDS20-LB. 344 344 341 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 345 345 346 - Thisisoptional,usercanconnectexternalDS18B20sensortothe+3.3v, 1-wireandGNDpin .andthisfieldwillreporttemperature.343 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 347 347 348 348 349 - **Example**:346 +== 2.3 Uplink Payload == 350 350 351 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 352 352 353 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 349 +((( 350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 351 +))) 354 354 353 +((( 354 +Uplink payload includes in total 8 bytes. 355 +))) 355 355 356 -==== (% style="color:blue" %)**Distance**(%%) ==== 357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 359 +**Size(bytes)** 360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 362 +[[Distance>>||anchor="H2.3.2A0Distance"]] 363 +(unit: mm) 364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 357 357 368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 358 358 359 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 360 360 371 +=== 2.3.1 Battery Info === 361 361 362 -**Example**: 363 363 364 - If thedata you get from theregister is 0x0B 0xEA, the distancebetweenthesensorandthe measuredobjectis 0BEA(H) = 3050 (D)/10= 305cm.374 +Check the battery voltage for DDS20-LB. 365 365 376 +Ex1: 0x0B45 = 2885mV 366 366 367 - ==== (% style="color:blue"%)**Distancesignal strength**(%%)====378 +Ex2: 0x0B49 = 2889mV 368 368 369 369 370 - Refersto the signal strength, the default output value will be between 0-65535.When the distancemeasurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.381 +=== 2.3.2 Distance === 371 371 372 372 373 -**Example**: 384 +((( 385 +Get the distance. Flat object range 20mm - 2000mm. 386 +))) 374 374 375 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 388 +((( 389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 376 376 377 -Customers can judge whether they need to adjust the environment based on the signal strength. 391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 392 +))) 378 378 394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 379 379 380 - ====(%style="color:blue"%)**InterruptPin& InterruptLevel**(%%)====396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 381 381 382 382 383 - Thisdata field shows if this packet is generated by interrupt or not.[[Click here>>||anchor="H3.3.2SetInterruptMode"]]for the hardware andsoftware set up.399 +=== 2.3.3 Interrupt Pin === 384 384 385 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 386 386 402 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 403 + 387 387 **Example:** 388 388 389 389 0x00: Normal uplink packet. ... ... @@ -391,59 +391,53 @@ 391 391 0x01: Interrupt Uplink Packet. 392 392 393 393 394 -=== =(%style="color:blue"%)**LiDAR temp**(%%)====411 +=== 2.3.4 DS18B20 Temperature sensor === 395 395 396 396 397 - Characterizetheinternaltemperature valueofthesensor.414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 398 398 399 -**Example: ** 400 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 401 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 416 +**Example**: 402 402 418 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 403 403 404 - ====(% style="color:blue"%)**MessageType**(%%) ====420 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 405 405 406 406 423 +=== 2.3.5 Sensor Flag === 424 + 425 + 407 407 ((( 408 - Fora normal uplink payload, themessagetypeis always0x01.427 +0x01: Detect Ultrasonic Sensor 409 409 ))) 410 410 411 411 ((( 412 - ValidMessage Type:431 +0x00: No Ultrasonic Sensor 413 413 ))) 414 414 415 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 416 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 417 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 418 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 419 419 435 +=== 2.3.6 Decode payload in The Things Network === 420 420 421 -=== 2.3.3 Decode payload in The Things Network === 422 422 423 - 424 424 While using TTN network, you can add the payload format to decode the payload. 425 425 426 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 427 427 442 +The payload decoder function for TTN V3 is here: 428 428 429 429 ((( 430 -T hepayloaddecoderfunctionforTTNis here:445 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 431 431 ))) 432 432 433 -((( 434 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 435 -))) 436 436 449 +== 2.4 Uplink Interval == 437 437 438 -== 2.4 Uplink Interval == 439 439 452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 440 440 441 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 442 442 455 +== 2.5 Show Data in DataCake IoT Server == 443 443 444 -== 2.5 Show Data in DataCake IoT Server == 445 445 446 - 447 447 ((( 448 448 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 449 449 ))) ... ... @@ -466,7 +466,7 @@ 466 466 467 467 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 468 468 469 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 470 470 471 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 472 472 ... ... @@ -479,19 +479,19 @@ 479 479 == 2.6 Datalog Feature == 480 480 481 481 482 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 483 483 484 484 485 485 === 2.6.1 Ways to get datalog via LoRaWAN === 486 486 487 487 488 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 489 489 490 490 * ((( 491 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 492 492 ))) 493 493 * ((( 494 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 495 495 ))) 496 496 497 497 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -502,7 +502,7 @@ 502 502 === 2.6.2 Unix TimeStamp === 503 503 504 504 505 - LDS12-LB uses Unix TimeStamp format based on516 +DDS20-LB uses Unix TimeStamp format based on 506 506 507 507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 508 508 ... ... @@ -521,7 +521,7 @@ 521 521 522 522 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 523 523 524 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 525 525 526 526 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 527 527 ... ... @@ -532,7 +532,7 @@ 532 532 Users can poll sensor values based on timestamps. Below is the downlink command. 533 533 534 534 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 535 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 536 536 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 537 537 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 538 538 ... ... @@ -549,7 +549,7 @@ 549 549 ))) 550 550 551 551 ((( 552 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 553 553 ))) 554 554 555 555 ... ... @@ -556,101 +556,17 @@ 556 556 == 2.7 Frequency Plans == 557 557 558 558 559 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 560 560 561 561 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 562 562 563 563 564 -= =2.8LiDAR ToF Measurement==575 += 3. Configure DDS20-LB = 565 565 566 -=== 2.8.1 Principle of Distance Measurement === 567 - 568 - 569 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 570 - 571 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 572 - 573 - 574 -=== 2.8.2 Distance Measurement Characteristics === 575 - 576 - 577 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 578 - 579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 580 - 581 - 582 -((( 583 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 584 -))) 585 - 586 -((( 587 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 588 -))) 589 - 590 -((( 591 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 592 -))) 593 - 594 - 595 -((( 596 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 597 -))) 598 - 599 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 600 - 601 -((( 602 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 603 -))) 604 - 605 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 606 - 607 -((( 608 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 609 -))) 610 - 611 - 612 -=== 2.8.3 Notice of usage === 613 - 614 - 615 -Possible invalid /wrong reading for LiDAR ToF tech: 616 - 617 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 618 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 619 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 620 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 621 - 622 -=== 2.8.4 Reflectivity of different objects === 623 - 624 - 625 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 626 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 627 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 628 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 629 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 630 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 631 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 632 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 633 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 634 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 635 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 636 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 637 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 638 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 639 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 640 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 641 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 642 -Unpolished white metal surface 643 -)))|(% style="width:93px" %)130% 644 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 645 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 646 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 647 - 648 -= 3. Configure LDS12-LB = 649 - 650 650 == 3.1 Configure Methods == 651 651 652 652 653 - LDS12-LB supports below configure method:580 +DDS20-LB supports below configure method: 654 654 655 655 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 656 656 ... ... @@ -658,6 +658,7 @@ 658 658 659 659 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 660 660 588 + 661 661 == 3.2 General Commands == 662 662 663 663 ... ... @@ -672,10 +672,10 @@ 672 672 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 673 673 674 674 675 -== 3.3 Commands special design for LDS12-LB ==603 +== 3.3 Commands special design for DDS20-LB == 676 676 677 677 678 -These commands only valid for LDS12-LB, as below:606 +These commands only valid for DDS20-LB, as below: 679 679 680 680 681 681 === 3.3.1 Set Transmit Interval Time === ... ... @@ -690,7 +690,7 @@ 690 690 ))) 691 691 692 692 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 693 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 694 694 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 695 695 30000 696 696 OK ... ... @@ -733,7 +733,7 @@ 733 733 (% style="color:blue" %)**AT Command: AT+INTMOD** 734 734 735 735 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 736 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 737 737 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 738 738 0 739 739 OK ... ... @@ -757,37 +757,11 @@ 757 757 758 758 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 759 759 760 -=== 3.3.3 Set Power Output Duration === 761 761 762 -Control the output duration 3V3 . Before each sampling, device will 763 - 764 -~1. first enable the power output to external sensor, 765 - 766 -2. keep it on as per duration, read sensor value and construct uplink payload 767 - 768 -3. final, close the power output. 769 - 770 -(% style="color:blue" %)**AT Command: AT+3V3T** 771 - 772 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 773 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 774 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 775 -OK 776 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 777 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 778 - 779 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 780 -Format: Command Code (0x07) followed by 3 bytes. 781 - 782 -The first byte is 01,the second and third bytes are the time to turn on. 783 - 784 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 785 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 786 - 787 787 = 4. Battery & Power Consumption = 788 788 789 789 790 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 791 791 792 792 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 793 793 ... ... @@ -796,7 +796,7 @@ 796 796 797 797 798 798 (% class="wikigeneratedid" %) 799 -User can change firmware LDS12-LB to:701 +User can change firmware DDS20-LB to: 800 800 801 801 * Change Frequency band/ region. 802 802 ... ... @@ -804,7 +804,7 @@ 804 804 805 805 * Fix bugs. 806 806 807 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 808 808 809 809 Methods to Update Firmware: 810 810 ... ... @@ -812,40 +812,42 @@ 812 812 813 813 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 814 814 717 + 815 815 = 6. FAQ = 816 816 817 -== 6.1 What is the frequency plan for LDS12-LB? ==720 +== 6.1 What is the frequency plan for DDS20-LB? == 818 818 819 819 820 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 821 821 822 822 823 -= 7.Trouble Shooting=726 +== 6.2 Can I use DDS20-LB in condensation environment? == 824 824 825 -== 7.1 AT Command input doesn't work == 826 826 729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 827 827 828 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 829 829 732 += 7. Trouble Shooting = 830 830 831 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==734 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 832 832 833 833 834 -((( 835 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 836 -))) 737 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 837 837 838 -((( 839 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 840 -))) 841 841 740 +== 7.2 AT Command input doesn't work == 842 842 843 -((( 844 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 845 -))) 846 846 743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 744 + 745 + 746 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 747 + 748 + 847 847 ((( 848 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 751 + 752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 849 849 ))) 850 850 851 851 ... ... @@ -852,7 +852,7 @@ 852 852 = 8. Order Info = 853 853 854 854 855 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 856 856 857 857 (% style="color:red" %)**XXX**(%%): **The default frequency band** 858 858 ... ... @@ -872,12 +872,13 @@ 872 872 873 873 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 874 874 779 + 875 875 = 9. Packing Info = 876 876 877 877 878 878 (% style="color:#037691" %)**Package Includes**: 879 879 880 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 881 881 882 882 (% style="color:#037691" %)**Dimension and weight**: 883 883 ... ... @@ -889,6 +889,7 @@ 889 889 890 890 * Weight / pcs : g 891 891 797 + 892 892 = 10. Support = 893 893 894 894
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content