Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.17
edited by Xiaoling
on 2023/07/15 15:51
Change comment: There is no comment for this version
To version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,41 +18,35 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
... ... @@ -64,20 +64,10 @@
64 64  
65 65  (% style="color:#037691" %)**Probe Specification:**
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
62 +* Measure Range: 3cm~~200cm @ 90% reflectivity
63 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
64 +* ToF FoV: ±9°, Total 18°
65 +* Light source: VCSEL
81 81  
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
... ... @@ -155,8 +155,8 @@
155 155  
156 156  == 1.8 Pin Definitions ==
157 157  
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159 159  
144 +[[image:image-20230805144259-1.png||height="413" width="741"]]
160 160  
161 161  == 1.9 Mechanical ==
162 162  
... ... @@ -192,7 +192,7 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
180 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
196 196  
197 197  
198 198  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -253,6 +253,8 @@
253 253  
254 254  Example parse in TTNv3
255 255  
241 +[[image:image-20230805103904-1.png||height="131" width="711"]]
242 +
256 256  (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
257 257  
258 258  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
... ... @@ -308,11 +308,11 @@
308 308  
309 309  
310 310  (((
311 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
312 -)))
298 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
313 313  
314 -(((
315 -Uplink payload includes in total 11 bytes.
300 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
301 +
302 +Uplink Payload totals 11 bytes.
316 316  )))
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -327,7 +327,7 @@
327 327  [[Message Type>>||anchor="HMessageType"]]
328 328  )))
329 329  
330 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
317 +[[image:image-20230805104104-2.png||height="136" width="754"]]
331 331  
332 332  
333 333  ==== (% style="color:blue" %)**Battery Info**(%%) ====
... ... @@ -377,18 +377,33 @@
377 377  Customers can judge whether they need to adjust the environment based on the signal strength.
378 378  
379 379  
367 +**1) When the sensor detects valid data:**
368 +
369 +[[image:image-20230805155335-1.png||height="145" width="724"]]
370 +
371 +
372 +**2) When the sensor detects invalid data:**
373 +
374 +[[image:image-20230805155428-2.png||height="139" width="726"]]
375 +
376 +
377 +**3) When the sensor is not connected:**
378 +
379 +[[image:image-20230805155515-3.png||height="143" width="725"]]
380 +
381 +
380 380  ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
381 381  
382 382  
383 383  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
384 384  
385 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
387 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
386 386  
387 387  **Example:**
388 388  
389 -0x00: Normal uplink packet.
391 +If byte[0]&0x01=0x00 : Normal uplink packet.
390 390  
391 -0x01: Interrupt Uplink Packet.
393 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
392 392  
393 393  
394 394  ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
... ... @@ -414,13 +414,97 @@
414 414  
415 415  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
416 416  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
417 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
418 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
419 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
420 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
419 419  
422 +[[image:image-20230805150315-4.png||height="233" width="723"]]
420 420  
421 -=== 2.3.3 Decode payload in The Things Network ===
422 422  
425 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
423 423  
427 +
428 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
429 +
430 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
431 +
432 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
434 +**Size(bytes)**
435 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
436 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
437 +Reserve(0xFF)
438 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
439 +LiDAR temp
440 +)))|(% style="width:85px" %)Unix TimeStamp
441 +
442 +**Interrupt flag & Interrupt level:**
443 +
444 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
445 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
446 +**Size(bit)**
447 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
448 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
449 +Interrupt flag
450 +)))
451 +
452 +* (((
453 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
454 +)))
455 +
456 +For example, in the US915 band, the max payload for different DR is:
457 +
458 +**a) DR0:** max is 11 bytes so one entry of data
459 +
460 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
461 +
462 +**c) DR2:** total payload includes 11 entries of data
463 +
464 +**d) DR3:** total payload includes 22 entries of data.
465 +
466 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
467 +
468 +
469 +**Downlink:**
470 +
471 +0x31 64 CC 68 0C 64 CC 69 74 05
472 +
473 +[[image:image-20230805144936-2.png||height="113" width="746"]]
474 +
475 +**Uplink:**
476 +
477 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
478 +
479 +
480 +**Parsed Value:**
481 +
482 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
483 +
484 +
485 +[360,176,30,High,True,2023-08-04 02:53:00],
486 +
487 +[355,168,30,Low,False,2023-08-04 02:53:29],
488 +
489 +[245,211,30,Low,False,2023-08-04 02:54:29],
490 +
491 +[57,700,30,Low,False,2023-08-04 02:55:29],
492 +
493 +[361,164,30,Low,True,2023-08-04 02:56:00],
494 +
495 +[337,184,30,Low,False,2023-08-04 02:56:40],
496 +
497 +[20,4458,30,Low,False,2023-08-04 02:57:40],
498 +
499 +[362,173,30,Low,False,2023-08-04 02:58:53],
500 +
501 +
502 +**History read from serial port:**
503 +
504 +[[image:image-20230805145056-3.png]]
505 +
506 +
507 +=== 2.3.4 Decode payload in The Things Network ===
508 +
509 +
424 424  While using TTN network, you can add the payload format to decode the payload.
425 425  
426 426  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -435,15 +435,9 @@
435 435  )))
436 436  
437 437  
438 -== 2.4 Uplink Interval ==
524 +== 2.4 ​Show Data in DataCake IoT Server ==
439 439  
440 440  
441 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
442 -
443 -
444 -== 2.5 ​Show Data in DataCake IoT Server ==
445 -
446 -
447 447  (((
448 448  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
449 449  )))
... ... @@ -476,13 +476,13 @@
476 476  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
477 477  
478 478  
479 -== 2.6 Datalog Feature ==
559 +== 2.5 Datalog Feature ==
480 480  
481 481  
482 482  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
483 483  
484 484  
485 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
565 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
486 486  
487 487  
488 488  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -499,7 +499,7 @@
499 499  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
500 500  
501 501  
502 -=== 2.6.2 Unix TimeStamp ===
582 +=== 2.5.2 Unix TimeStamp ===
503 503  
504 504  
505 505  LDS12-LB uses Unix TimeStamp format based on
... ... @@ -516,7 +516,7 @@
516 516  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
517 517  
518 518  
519 -=== 2.6.3 Set Device Time ===
599 +=== 2.5.3 Set Device Time ===
520 520  
521 521  
522 522  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -526,7 +526,7 @@
526 526  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527 527  
528 528  
529 -=== 2.6.4 Poll sensor value ===
609 +=== 2.5.4 Poll sensor value ===
530 530  
531 531  
532 532  Users can poll sensor values based on timestamps. Below is the downlink command.
... ... @@ -553,7 +553,7 @@
553 553  )))
554 554  
555 555  
556 -== 2.7 Frequency Plans ==
636 +== 2.6 Frequency Plans ==
557 557  
558 558  
559 559  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -561,9 +561,9 @@
561 561  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562 562  
563 563  
564 -== 2.8 LiDAR ToF Measurement ==
644 +== 2.7 LiDAR ToF Measurement ==
565 565  
566 -=== 2.8.1 Principle of Distance Measurement ===
646 +=== 2.7.1 Principle of Distance Measurement ===
567 567  
568 568  
569 569  The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
... ... @@ -571,7 +571,7 @@
571 571  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
572 572  
573 573  
574 -=== 2.8.2 Distance Measurement Characteristics ===
654 +=== 2.7.2 Distance Measurement Characteristics ===
575 575  
576 576  
577 577  With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
... ... @@ -609,7 +609,7 @@
609 609  )))
610 610  
611 611  
612 -=== 2.8.3 Notice of usage ===
692 +=== 2.7.3 Notice of usage ===
613 613  
614 614  
615 615  Possible invalid /wrong reading for LiDAR ToF tech:
... ... @@ -619,7 +619,7 @@
619 619  * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 620  * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
621 621  
622 -=== 2.8.4  Reflectivity of different objects ===
702 +=== 2.7.4  Reflectivity of different objects ===
623 623  
624 624  
625 625  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
... ... @@ -726,9 +726,9 @@
726 726  === 3.3.2 Set Interrupt Mode ===
727 727  
728 728  
729 -Feature, Set Interrupt mode for PA8 of pin.
809 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
730 730  
731 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
811 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
732 732  
733 733  (% style="color:blue" %)**AT Command: AT+INTMOD**
734 734  
... ... @@ -739,7 +739,11 @@
739 739  OK
740 740  the mode is 0 =Disable Interrupt
741 741  )))
742 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
822 +|(% style="width:154px" %)(((
823 +AT+INTMOD=2
824 +
825 +(default)
826 +)))|(% style="width:196px" %)(((
743 743  Set Transmit Interval
744 744  0. (Disable Interrupt),
745 745  ~1. (Trigger by rising and falling edge)
... ... @@ -759,7 +759,7 @@
759 759  
760 760  === 3.3.3  Set Power Output Duration ===
761 761  
762 -Control the output duration 3V3 . Before each sampling, device will
846 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
763 763  
764 764  ~1. first enable the power output to external sensor,
765 765  
... ... @@ -775,6 +775,7 @@
775 775  OK
776 776  |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
777 777  |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
778 778  
779 779  (% style="color:blue" %)**Downlink Command: 0x07**(%%)
780 780  Format: Command Code (0x07) followed by 3 bytes.
... ... @@ -783,6 +783,7 @@
783 783  
784 784  * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
785 785  * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 +* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
786 786  
787 787  = 4. Battery & Power Consumption =
788 788  
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content