Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- 1701149922873-259.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
- image-20231110102635-5.png
- image-20231128133704-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LDS12-LB-- LoRaWANLiDARToFDistanceSensor User Manual1 +DS20L -- LoRaWAN Smart Distance Detector User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023 0614153353-1.png]]2 +[[image:image-20231110085342-2.png||height="481" width="481"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,170 +18,66 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDARToFDistanceSensor ==22 +== 1.1 What is LoRaWAN Smart Distance Detector == 22 22 23 23 24 -The Dragino LDS12-LB is a(% style="color:blue" %)**LoRaWANLiDARToF(Time of Flight)DistanceSensor**(%%)forInternetofThings solution. Itis capabletomeasure the distance toan objectas closeas 10centimeters(+/- 5cm up to 6m) andas far as 12 meters(+/-1%startingat6m)!.TheLiDAR probeuseslaser inductiontechnologyfordistancemeasurement.25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm. 25 25 26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 27 28 - Itdetects thedistance betweenthemeasuredobject andthe sensor,anduploadsthevalue viawirelesstoLoRaWANIoTServer.30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.** 29 29 30 - TheLoRawirelesstechnologyused in LDS12-LB allowsdevice tosend data and reachextremelyngrangesatlowdata-rates.Itprovides ultra-long range spread spectrum communicationandhigh interferenceimmunity whilstminimizing currentconsumption.32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 31 31 32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 - LDS12-LB ispowered by (% style="color:blue" %)**8500mAh Li-SOCI2battery**(%%),it isdesigned for longterm use up to 5 years.35 +[[image:image-20231110102635-5.png||height="402" width="807"]] 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-20230615152941-1.png||height="459" width="800"]] 39 - 40 - 41 41 == 1.2 Features == 42 42 43 43 44 -* LoRaWAN 1.0.3 Class A 45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 -* Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 51 -* Support Bluetooth v5.1 and LoRaWAN remote configure 52 -* Support wireless OTA update firmware 41 +* LoRaWAN Class A protocol 42 +* LiDAR distance detector, range 3 ~~ 200cm 43 +* Periodically detect or continuously detect mode 53 53 * AT Commands to change parameters 54 -* Downlink to change configure 55 -* 8500mAh Battery for long term use 45 +* Remotely configure parameters via LoRaWAN Downlink 46 +* Alarm & Counting mode 47 +* Firmware upgradable via program port or LoRa protocol 48 +* Built-in 2400mAh battery or power by external power source 56 56 57 57 == 1.3 Specification == 58 58 59 59 60 -(% style="color:#037691" %)** CommonDCCharacteristics:**53 +(% style="color:#037691" %)**LiDAR Sensor:** 61 61 62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 -* Operating Temperature: -40 ~~ 85°C 55 +* Operation Temperature: -40 ~~ 80 °C 56 +* Operation Humidity: 0~~99.9%RH (no Dew) 57 +* Storage Temperature: -10 ~~ 45°C 58 +* Measure Range: 3cm~~200cm @ 90% reflectivity 59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 60 +* ToF FoV: ±9°, Total 18° 61 +* Light source: VCSEL 64 64 65 - (% style="color:#037691"%)**ProbeSpecification:**63 +== 1.4 Power Consumption == 66 66 67 -* Storage temperature:-20℃~~75℃ 68 -* Operating temperature : -20℃~~60℃ 69 -* Measure Distance: 70 -** 0.1m ~~ 12m @ 90% Reflectivity 71 -** 0.1m ~~ 4m @ 10% Reflectivity 72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution : 5mm 74 -* Ambient light immunity : 70klux 75 -* Enclosure rating : IP65 76 -* Light source : LED 77 -* Central wavelength : 850nm 78 -* FOV : 3.6° 79 -* Material of enclosure : ABS+PC 80 -* Wire length : 25cm 81 81 82 -(% style="color:#037691" %)** LoRaSpec:**66 +(% style="color:#037691" %)**Battery Power Mode:** 83 83 84 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 85 -* Max +22 dBm constant RF output vs. 86 -* RX sensitivity: down to -139 dBm. 87 -* Excellent blocking immunity 68 +* Idle: 0.003 mA @ 3.3v 69 +* Max : 360 mA 88 88 89 -(% style="color:#037691" %)** Battery:**71 +(% style="color:#037691" %)**Continuously mode**: 90 90 91 -* Li/SOCI2 un-chargeable battery 92 -* Capacity: 8500mAh 93 -* Self-Discharge: <1% / Year @ 25°C 94 -* Max continuously current: 130mA 95 -* Max boost current: 2A, 1 second 73 +* Idle: 21 mA @ 3.3v 74 +* Max : 360 mA 96 96 97 - (% style="color:#037691"%)**PowerConsumption**76 += 2. Configure DS20L to connect to LoRaWAN network = 98 98 99 -* Sleep Mode: 5uA @ 3.3v 100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 - 102 -== 1.4 Applications == 103 - 104 - 105 -* Horizontal distance measurement 106 -* Parking management system 107 -* Object proximity and presence detection 108 -* Intelligent trash can management system 109 -* Robot obstacle avoidance 110 -* Automatic control 111 -* Sewer 112 - 113 -(% style="display:none" %) 114 - 115 -== 1.5 Sleep mode and working mode == 116 - 117 - 118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 119 - 120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 121 - 122 - 123 -== 1.6 Button & LEDs == 124 - 125 - 126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 127 - 128 - 129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 134 -))) 135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 139 -))) 140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 - 142 -== 1.7 BLE connection == 143 - 144 - 145 -LDS12-LB support BLE remote configure. 146 - 147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 148 - 149 -* Press button to send an uplink 150 -* Press button to active device. 151 -* Device Power on or reset. 152 - 153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 154 - 155 - 156 -== 1.8 Pin Definitions == 157 - 158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 159 - 160 - 161 -== 1.9 Mechanical == 162 - 163 - 164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 165 - 166 - 167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 168 - 169 - 170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 171 - 172 - 173 -(% style="color:blue" %)**Probe Mechanical:** 174 - 175 - 176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 177 - 178 - 179 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 180 - 181 181 == 2.1 How it works == 182 182 183 183 184 -The LDS12-LBis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate theLDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 185 185 186 186 (% style="display:none" %) (%%) 187 187 ... ... @@ -190,15 +190,14 @@ 190 190 191 191 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 192 192 193 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %) 194 194 195 -[[image:image-2023 0615153004-2.png||height="459" width="800"]](% style="display:none" %)92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %) 196 196 94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 197 197 198 - (% style="color:blue"%)**Step1:**(%%)Createadevicein TTNwith theOTAAkeysfrom LDS12-LB.96 +Each DS20L is shipped with a sticker with the default device EUI as below: 199 199 200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below: 201 - 202 202 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 203 203 204 204 ... ... @@ -226,10 +226,11 @@ 226 226 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 227 227 228 228 229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L 230 230 127 +[[image:image-20231128133704-1.png||height="189" width="441"]] 231 231 232 -Press the button for 5 seconds to activate the LDS12-LB.129 +Press the button for 5 seconds to activate the DS20L. 233 233 234 234 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 235 235 ... ... @@ -241,7 +241,7 @@ 241 241 === 2.3.1 Device Status, FPORT~=5 === 242 242 243 243 244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LBto send device configure detail, include device configure status.LDS12-LBwill uplink a payload via FPort=5 to server.141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server. 245 245 246 246 The Payload format is as below. 247 247 ... ... @@ -253,12 +253,14 @@ 253 253 254 254 Example parse in TTNv3 255 255 256 - **Sensor Model**:For LDS12-LB, this value is 0x24153 +[[image:1701149922873-259.png]] 257 257 258 - **FirmwareVersion**: 0x0100,Means:v1.0.0 version155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21 259 259 260 -**Fre quencyBand**:157 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 261 261 159 +(% style="color:blue" %)**Frequency Band**: 160 + 262 262 0x01: EU868 263 263 264 264 0x02: US915 ... ... @@ -287,7 +287,7 @@ 287 287 288 288 0x0e: MA869 289 289 290 -**Sub-Band**: 189 +(% style="color:blue" %)**Sub-Band**: 291 291 292 292 AU915 and US915:value 0x00 ~~ 0x08 293 293 ... ... @@ -295,7 +295,7 @@ 295 295 296 296 Other Bands: Always 0x00 297 297 298 -**Battery Info**: 197 +(% style="color:blue" %)**Battery Info**: 299 299 300 300 Check the battery voltage. 301 301 ... ... @@ -308,11 +308,11 @@ 308 308 309 309 310 310 ((( 311 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 312 -))) 210 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will: 313 313 314 -((( 315 -Uplink payload includes in total 11 bytes. 212 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 213 + 214 +Uplink Payload totals 11 bytes. 316 316 ))) 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -327,13 +327,13 @@ 327 327 [[Message Type>>||anchor="HMessageType"]] 328 328 ))) 329 329 330 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]229 +[[image:image-20230805104104-2.png||height="136" width="754"]] 331 331 332 332 333 333 ==== (% style="color:blue" %)**Battery Info**(%%) ==== 334 334 335 335 336 -Check the battery voltage for LDS12-LB.235 +Check the battery voltage for DS20L. 337 337 338 338 Ex1: 0x0B45 = 2885mV 339 339 ... ... @@ -377,18 +377,33 @@ 377 377 Customers can judge whether they need to adjust the environment based on the signal strength. 378 378 379 379 279 +**1) When the sensor detects valid data:** 280 + 281 +[[image:image-20230805155335-1.png||height="145" width="724"]] 282 + 283 + 284 +**2) When the sensor detects invalid data:** 285 + 286 +[[image:image-20230805155428-2.png||height="139" width="726"]] 287 + 288 + 289 +**3) When the sensor is not connected:** 290 + 291 +[[image:image-20230805155515-3.png||height="143" width="725"]] 292 + 293 + 380 380 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 381 381 382 382 383 383 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 384 384 385 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].299 +Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI . 386 386 387 387 **Example:** 388 388 389 -0x00: Normal uplink packet. 303 +If byte[0]&0x01=0x00 : Normal uplink packet. 390 390 391 -0x01: Interrupt Uplink Packet. 305 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 392 392 393 393 394 394 ==== (% style="color:blue" %)**LiDAR temp**(%%) ==== ... ... @@ -414,243 +414,160 @@ 414 414 415 415 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 416 416 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 417 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %) [[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]418 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %) [[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]331 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 332 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 419 419 334 +[[image:image-20230805150315-4.png||height="233" width="723"]] 420 420 421 -=== 2.3.3 Decode payload in The Things Network === 422 422 337 +=== 2.3.3 Historical measuring distance, FPORT~=3 === 423 423 424 -While using TTN network, you can add the payload format to decode the payload. 425 425 426 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]340 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 427 427 342 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 428 428 429 -((( 430 -The payload decoder function for TTN is here: 431 -))) 344 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 345 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 346 +**Size(bytes)** 347 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 348 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 349 +Reserve(0xFF) 350 +)))|Distance|Distance signal strength|(% style="width:88px" %)((( 351 +LiDAR temp 352 +)))|(% style="width:85px" %)Unix TimeStamp 432 432 433 -((( 434 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 435 -))) 354 +**Interrupt flag & Interrupt level:** 436 436 437 - 438 -== 2.4 Uplink Interval == 439 - 440 - 441 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 442 - 443 - 444 -== 2.5 Show Data in DataCake IoT Server == 445 - 446 - 447 -((( 448 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 357 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 358 +**Size(bit)** 359 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 360 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 361 +Interrupt flag 449 449 ))) 450 450 451 - 452 -((( 453 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 364 +* ((( 365 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands. 454 454 ))) 455 455 456 -((( 457 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 458 -))) 368 +For example, in the US915 band, the max payload for different DR is: 459 459 370 +**a) DR0:** max is 11 bytes so one entry of data 460 460 461 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]372 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 462 462 374 +**c) DR2:** total payload includes 11 entries of data 463 463 464 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]376 +**d) DR3:** total payload includes 22 entries of data. 465 465 378 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0 466 466 467 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 468 468 469 - (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**381 +**Downlink:** 470 470 471 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]383 +0x31 64 CC 68 0C 64 CC 69 74 05 472 472 385 +[[image:image-20230805144936-2.png||height="113" width="746"]] 473 473 474 - After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.387 +**Uplink:** 475 475 476 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]389 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 477 477 478 478 479 - == 2.6 Datalog Feature==392 +**Parsed Value:** 480 480 394 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 481 481 482 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 483 483 397 +[360,176,30,High,True,2023-08-04 02:53:00], 484 484 485 - === 2.6.1Waysto getdatalog via LoRaWAN ===399 +[355,168,30,Low,False,2023-08-04 02:53:29], 486 486 401 +[245,211,30,Low,False,2023-08-04 02:54:29], 487 487 488 - Set PNACKMD=1,LDS12-LB will wait for ACK for every uplink,when there is no LoRaWAN network,LDS12-LB will mark these recordswith non-ack messages and store the sensor data,nd it willsend all messages (10sinterval) after the network recovery.403 +[57,700,30,Low,False,2023-08-04 02:55:29], 489 489 490 -* ((( 491 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 492 -))) 493 -* ((( 494 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 495 -))) 405 +[361,164,30,Low,True,2023-08-04 02:56:00], 496 496 497 - Belowis the typicalcasefor the auto-updatedatalog feature (Set PNACKMD=1)407 +[337,184,30,Low,False,2023-08-04 02:56:40], 498 498 499 -[ [image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]409 +[20,4458,30,Low,False,2023-08-04 02:57:40], 500 500 411 +[362,173,30,Low,False,2023-08-04 02:58:53], 501 501 502 -=== 2.6.2 Unix TimeStamp === 503 503 414 +**History read from serial port:** 504 504 505 - LDS12-LB uses Unix TimeStamp format based on416 +[[image:image-20230805145056-3.png]] 506 506 507 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 508 508 509 - Usercan getthis time fromlink:[[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]]:419 +=== 2.3.4 Decode payload in The Things Network === 510 510 511 -Below is the converter example 512 512 513 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png"height="298"width="720"]]422 +While using TTN network, you can add the payload format to decode the payload. 514 514 424 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 515 515 516 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 517 517 518 - 519 -=== 2.6.3 Set Device Time === 520 - 521 - 522 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 523 - 524 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 525 - 526 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 527 - 528 - 529 -=== 2.6.4 Poll sensor value === 530 - 531 - 532 -Users can poll sensor values based on timestamps. Below is the downlink command. 533 - 534 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 535 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 536 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 537 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 538 - 539 539 ((( 540 -T imestampstartandTimestamp end-useUnix TimeStamp formatas mentionedabove. Devices willreplywithall data logs during thisperiod, using theuplink interval.428 +The payload decoder function for TTN is here: 541 541 ))) 542 542 543 543 ((( 544 - Forexample, downlinkcommand[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]432 +DS20L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 545 545 ))) 546 546 547 -((( 548 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 549 -))) 550 550 551 -((( 552 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 553 -))) 436 +== 2.4 Show Data in DataCake IoT Server == 554 554 555 555 556 -== 2.7 Frequency Plans == 557 - 558 - 559 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 560 - 561 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 562 - 563 - 564 -== 2.8 LiDAR ToF Measurement == 565 - 566 -=== 2.8.1 Principle of Distance Measurement === 567 - 568 - 569 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 570 - 571 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 572 - 573 - 574 -=== 2.8.2 Distance Measurement Characteristics === 575 - 576 - 577 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 578 - 579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 580 - 581 - 582 582 ((( 583 - (%style="color:blue"%)**①**(%%)Represents thedetectionblindzoneofTheLiDARprobe,0-10cm,withinwhichtheoutput data is unreliable.440 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 584 584 ))) 585 585 443 + 586 586 ((( 587 -(% style="color:blue" %)** ②**(%%)Representsthe operatingrangeof TheLiDARprobe detecting blacktargetwith10% reflectivity,0.1-5m.445 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.** 588 588 ))) 589 589 590 590 ((( 591 -(% style="color:blue" %)** ③**(%%)RepresentstheoperatingrangeofThe LiDARprobe detectingwhite targetwith90%reflectivity,0.1-12m.449 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:** 592 592 ))) 593 593 594 594 595 -((( 596 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 597 -))) 453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]] 598 598 599 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 600 600 601 -((( 602 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 603 -))) 456 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]] 604 604 605 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 606 606 607 -((( 608 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 609 -))) 459 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 610 610 461 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.** 611 611 612 - === 2.8.3Noticef usage=463 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 613 613 614 614 615 - Possible invalid/wrongreadingforLiDARToFtech:466 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 616 616 617 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 618 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 619 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 620 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 468 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 621 621 622 -=== 2.8.4 Reflectivity of different objects === 623 623 471 +== 2.5 Frequency Plans == 624 624 625 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 626 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 627 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 628 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 629 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 630 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 631 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 632 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 633 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 634 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 635 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 636 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 637 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 638 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 639 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 640 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 641 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 642 -Unpolished white metal surface 643 -)))|(% style="width:93px" %)130% 644 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 645 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 646 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 647 647 648 - =3.ConfigureLDS12-LB=474 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 649 649 476 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 477 + 478 + 479 += 3. Configure DS20L = 480 + 650 650 == 3.1 Configure Methods == 651 651 652 652 653 - LDS12-LBsupports below configure method:484 +DS20L supports below configure method: 654 654 655 655 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 656 656 ... ... @@ -672,10 +672,10 @@ 672 672 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 673 673 674 674 675 -== 3.3 Commands special design for LDS12-LB==506 +== 3.3 Commands special design for DS20L == 676 676 677 677 678 -These commands only valid for LDS12-LB, as below:509 +These commands only valid for DS20L, as below: 679 679 680 680 681 681 === 3.3.1 Set Transmit Interval Time === ... ... @@ -717,18 +717,16 @@ 717 717 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 718 718 ))) 719 719 * ((( 720 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 721 - 722 - 723 - 551 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 724 724 ))) 725 725 554 + 726 726 === 3.3.2 Set Interrupt Mode === 727 727 728 728 729 -Feature, Set Interrupt mode for PA8ofpin.558 +Feature, Set Interrupt mode for pin of GPIO_EXTI. 730 730 731 -When AT+INTMOD=0 is set, P A8is used as a digital input port.560 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port. 732 732 733 733 (% style="color:blue" %)**AT Command: AT+INTMOD** 734 734 ... ... @@ -739,7 +739,11 @@ 739 739 OK 740 740 the mode is 0 =Disable Interrupt 741 741 ))) 742 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 571 +|(% style="width:154px" %)((( 572 +AT+INTMOD=3 573 + 574 +(default) 575 +)))|(% style="width:196px" %)((( 743 743 Set Transmit Interval 744 744 0. (Disable Interrupt), 745 745 ~1. (Trigger by rising and falling edge) ... ... @@ -757,37 +757,82 @@ 757 757 758 758 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 759 759 760 -=== 3.3.3 Set Power Output Duration === 761 761 762 -Control the output duration 3V3 . Before each sampling, device will 763 763 764 - ~1.firstenablethepower output toexternalsensor,595 +== 3.3.3 Set work mode == 765 765 766 -2. keep it on as per duration, read sensor value and construct uplink payload 767 767 768 - 3. final, close thepower output.598 +Feature: Switch working mode 769 769 770 -(% style="color:blue" %)**AT Command: AT+ 3V3T**600 +(% style="color:blue" %)**AT Command: AT+MOD** 771 771 772 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 773 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 774 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 602 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %) 603 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response** 604 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 605 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 775 775 OK 776 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 777 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 778 778 779 - (% style="color:blue" %)**DownlinkCommand:0x07**(%%)780 - Format: Command Code (0x07)followed by 3 bytes.608 +Attention:Take effect after ATZ 609 +))) 781 781 782 - Thefirstbyteis 01,the second and thirdbytesare the time toturn on.611 +(% style="color:blue" %)**Downlink Command:** 783 783 784 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 785 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 613 +* **Example: **0x0A00 ~/~/ Same as AT+MOD=0 786 786 615 +* **Example:** 0x0A01 ~/~/ Same as AT+MOD=1 616 + 617 + 618 +=== 3.3.4 Set threshold and threshold mode === 619 + 620 + 621 +Feature, Set threshold and threshold mode 622 + 623 +When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms. 624 + 625 +(% style="color:blue" %)**AT Command: AT+DOL** 626 + 627 +(% border="1" cellspacing="4" style="width:571.818px" %) 628 +|(% style="width:172px;background-color:#4F81BD;color:white" %)**Command Example**|(% style="width:279px;background-color:#4F81BD;color:white" %)**Function**|(% style="width:118px;background-color:#4F81BD;color:white" %)**Response** 629 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 630 +0,0,0,0,400 631 + 632 +OK 633 +))) 634 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK 635 + 636 + 637 +(% border="1" cellspacing="4" style="width:668.818px" %) 638 +|(% rowspan="11" style="width:166px;background-color:#4F81BD;color:white" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits 639 +|(% style="width:251px" %)1:Use upper and lower limits 640 +|(% style="width:251px" %)2:Less than the lower limit 641 +|(% style="width:251px" %)3:Greater than the lower limit 642 +|(% style="width:251px" %)4:Less than the upper limit 643 +|(% style="width:251px" %)5: Greater than the upper limit 644 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 645 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 646 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 647 +|(% style="width:251px" %)1 Person or object counting statistics 648 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 649 +0~~10000ms 650 + 651 + 652 +))) 653 + 654 +(% style="color:blue" %)**Downlink Command: 0x07** 655 + 656 +Format: Command Code (0x07) followed by 9bytes. 657 + 658 +* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 659 + 660 +* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 661 + 662 + 663 + 664 + 787 787 = 4. Battery & Power Consumption = 788 788 789 789 790 - LDS12-LBuseER26500+SPC1520battery pack. See below link for detail information about the battery info and how to replace.668 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace. 791 791 792 792 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 793 793 ... ... @@ -796,7 +796,7 @@ 796 796 797 797 798 798 (% class="wikigeneratedid" %) 799 -User can change firmware LDS12-LBto:677 +User can change firmware DS20L to: 800 800 801 801 * Change Frequency band/ region. 802 802 ... ... @@ -804,7 +804,7 @@ 804 804 805 805 * Fix bugs. 806 806 807 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**685 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]** 808 808 809 809 Methods to Update Firmware: 810 810 ... ... @@ -814,10 +814,10 @@ 814 814 815 815 = 6. FAQ = 816 816 817 -== 6.1 What is the frequency plan for LDS12-LB? ==695 +== 6.1 What is the frequency plan for DS20L? == 818 818 819 819 820 - LDS12-LBuse the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]698 +DS20L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 821 821 822 822 823 823 = 7. Trouble Shooting = ... ... @@ -852,7 +852,7 @@ 852 852 = 8. Order Info = 853 853 854 854 855 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**733 +Part Number: (% style="color:blue" %)**DS20L-XXX** 856 856 857 857 (% style="color:red" %)**XXX**(%%): **The default frequency band** 858 858 ... ... @@ -877,7 +877,7 @@ 877 877 878 878 (% style="color:#037691" %)**Package Includes**: 879 879 880 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1758 +* DS20L LoRaWAN Smart Distance Detector x 1 881 881 882 882 (% style="color:#037691" %)**Dimension and weight**: 883 883
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.5 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +190.6 KB - Content