Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.15
edited by Xiaoling
on 2023/07/15 15:50
Change comment: There is no comment for this version
To version 118.2
edited by Xiaoling
on 2023/11/28 14:00
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,170 +18,66 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
53 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
55 +* Operation Temperature: -40 ~~ 80 °C
56 +* Operation Humidity: 0~~99.9%RH (no Dew)
57 +* Storage Temperature: -10 ~~ 45°C
58 +* Measure Range: 3cm~~200cm @ 90% reflectivity
59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 +* ToF FoV: ±9°, Total 18°
61 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
63 +== 1.4 Power Consumption ==
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 81  
82 -(% style="color:#037691" %)**LoRa Spec:**
66 +(% style="color:#037691" %)**Battery Power Mode:**
83 83  
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
68 +* Idle: 0.003 mA @ 3.3v
69 +* Max : 360 mA
88 88  
89 -(% style="color:#037691" %)**Battery:**
71 +(% style="color:#037691" %)**Continuously mode**:
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
73 +* Idle: 21 mA @ 3.3v
74 +* Max : 360 mA
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
76 += 2. Configure DS20L to connect to LoRaWAN network =
98 98  
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 -
102 -== 1.4 Applications ==
103 -
104 -
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
112 -
113 -(% style="display:none" %)
114 -
115 -== 1.5 Sleep mode and working mode ==
116 -
117 -
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 -
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 -
122 -
123 -== 1.6 Button & LEDs ==
124 -
125 -
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 -
128 -
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 -)))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 -
142 -== 1.7 BLE connection ==
143 -
144 -
145 -LDS12-LB support BLE remote configure.
146 -
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 -
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
152 -
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 -
155 -
156 -== 1.8 Pin Definitions ==
157 -
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159 -
160 -
161 -== 1.9 Mechanical ==
162 -
163 -
164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165 -
166 -
167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168 -
169 -
170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171 -
172 -
173 -(% style="color:blue" %)**Probe Mechanical:**
174 -
175 -
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 -
178 -
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 -
181 181  == 2.1 How it works ==
182 182  
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 185  
186 186  (% style="display:none" %) (%%)
187 187  
... ... @@ -190,15 +190,14 @@
190 190  
191 191  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192 192  
193 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
196 196  
94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
96 +Each DS20L is shipped with a sticker with the default device EUI as below:
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
201 -
202 202  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203 203  
204 204  
... ... @@ -226,10 +226,11 @@
226 226  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227 227  
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
230 230  
127 +[[image:image-20231128133704-1.png||height="189" width="441"]]
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
129 +Press the button for 5 seconds to activate the DS20L.
233 233  
234 234  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235 235  
... ... @@ -238,11 +238,10 @@
238 238  
239 239  == 2.3 ​Uplink Payload ==
240 240  
241 -
242 242  === 2.3.1 Device Status, FPORT~=5 ===
243 243  
244 244  
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
246 246  
247 247  The Payload format is as below.
248 248  
... ... @@ -254,12 +254,14 @@
254 254  
255 255  Example parse in TTNv3
256 256  
257 -**Sensor Model**: For LDS12-LB, this value is 0x24
153 +[[image:1701149922873-259.png]]
258 258  
259 -**Firmware Version**: 0x0100, Means: v1.0.0 version
155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
260 260  
261 -**Frequency Band**:
157 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
262 262  
159 +(% style="color:blue" %)**Frequency Band**:
160 +
263 263  0x01: EU868
264 264  
265 265  0x02: US915
... ... @@ -288,7 +288,7 @@
288 288  
289 289  0x0e: MA869
290 290  
291 -**Sub-Band**:
189 +(% style="color:blue" %)**Sub-Band**:
292 292  
293 293  AU915 and US915:value 0x00 ~~ 0x08
294 294  
... ... @@ -296,7 +296,7 @@
296 296  
297 297  Other Bands: Always 0x00
298 298  
299 -**Battery Info**:
197 +(% style="color:blue" %)**Battery Info**:
300 300  
301 301  Check the battery voltage.
302 302  
... ... @@ -309,11 +309,11 @@
309 309  
310 310  
311 311  (((
312 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
313 -)))
210 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
314 314  
315 -(((
316 -Uplink payload includes in total 11 bytes.
212 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
213 +
214 +Uplink Payload totals 11 bytes.
317 317  )))
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -328,13 +328,13 @@
328 328  [[Message Type>>||anchor="HMessageType"]]
329 329  )))
330 330  
331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
229 +[[image:image-20230805104104-2.png||height="136" width="754"]]
332 332  
333 333  
334 -====(% style="color:blue" %)**Battery Info** ====
232 +==== (% style="color:blue" %)**Battery Info**(%%) ====
335 335  
336 336  
337 -Check the battery voltage for LDS12-LB.
235 +Check the battery voltage for DS20L.
338 338  
339 339  Ex1: 0x0B45 = 2885mV
340 340  
... ... @@ -341,7 +341,7 @@
341 341  Ex2: 0x0B49 = 2889mV
342 342  
343 343  
344 -====(% style="color:blue" %)**DS18B20 Temperature sensor** ====
242 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
345 345  
346 346  
347 347  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -354,7 +354,7 @@
354 354  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
355 355  
356 356  
357 -====(% style="color:blue" %)**Distance** ====
255 +==== (% style="color:blue" %)**Distance**(%%) ====
358 358  
359 359  
360 360  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -365,7 +365,7 @@
365 365  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
366 366  
367 367  
368 -====(% style="color:blue" %)**Distance signal strength** ====
266 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
369 369  
370 370  
371 371  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -378,21 +378,36 @@
378 378  Customers can judge whether they need to adjust the environment based on the signal strength.
379 379  
380 380  
381 -====(% style="color:blue" %)**Interrupt Pin & Interrupt Level** ====
279 +**1) When the sensor detects valid data:**
382 382  
281 +[[image:image-20230805155335-1.png||height="145" width="724"]]
383 383  
283 +
284 +**2) When the sensor detects invalid data:**
285 +
286 +[[image:image-20230805155428-2.png||height="139" width="726"]]
287 +
288 +
289 +**3) When the sensor is not connected:**
290 +
291 +[[image:image-20230805155515-3.png||height="143" width="725"]]
292 +
293 +
294 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
295 +
296 +
384 384  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
385 385  
386 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
299 +Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
387 387  
388 388  **Example:**
389 389  
390 -0x00: Normal uplink packet.
303 +If byte[0]&0x01=0x00 : Normal uplink packet.
391 391  
392 -0x01: Interrupt Uplink Packet.
305 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
393 393  
394 394  
395 -====(% style="color:blue" %)**LiDAR temp** ====
308 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
396 396  
397 397  
398 398  Characterize the internal temperature value of the sensor.
... ... @@ -402,7 +402,7 @@
402 402  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
403 403  
404 404  
405 -====(% style="color:blue" %)**Message Type** ====
318 +==== (% style="color:blue" %)**Message Type**(%%) ====
406 406  
407 407  
408 408  (((
... ... @@ -415,244 +415,160 @@
415 415  
416 416  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
417 417  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
418 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
419 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
331 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
332 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
420 420  
334 +[[image:image-20230805150315-4.png||height="233" width="723"]]
421 421  
422 422  
423 -=== 2.3.3 Decode payload in The Things Network ===
337 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
424 424  
425 425  
426 -While using TTN network, you can add the payload format to decode the payload.
340 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
427 427  
428 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
342 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
429 429  
344 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
345 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
346 +**Size(bytes)**
347 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
348 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
349 +Reserve(0xFF)
350 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
351 +LiDAR temp
352 +)))|(% style="width:85px" %)Unix TimeStamp
430 430  
431 -(((
432 -The payload decoder function for TTN is here:
433 -)))
354 +**Interrupt flag & Interrupt level:**
434 434  
435 -(((
436 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
357 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
358 +**Size(bit)**
359 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
360 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
361 +Interrupt flag
437 437  )))
438 438  
439 -
440 -== 2.4 Uplink Interval ==
441 -
442 -
443 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
444 -
445 -
446 -== 2.5 ​Show Data in DataCake IoT Server ==
447 -
448 -
449 -(((
450 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
364 +* (((
365 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
451 451  )))
452 452  
368 +For example, in the US915 band, the max payload for different DR is:
453 453  
454 -(((
455 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
456 -)))
370 +**a) DR0:** max is 11 bytes so one entry of data
457 457  
458 -(((
459 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
460 -)))
372 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
461 461  
374 +**c) DR2:** total payload includes 11 entries of data
462 462  
463 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
376 +**d) DR3:** total payload includes 22 entries of data.
464 464  
378 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
465 465  
466 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
467 467  
381 +**Downlink:**
468 468  
469 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
383 +0x31 64 CC 68 0C 64 CC 69 74 05
470 470  
471 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
385 +[[image:image-20230805144936-2.png||height="113" width="746"]]
472 472  
473 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
387 +**Uplink:**
474 474  
389 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
475 475  
476 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
477 477  
478 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
392 +**Parsed Value:**
479 479  
394 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
480 480  
481 -== 2.6 Datalog Feature ==
482 482  
397 +[360,176,30,High,True,2023-08-04 02:53:00],
483 483  
484 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
399 +[355,168,30,Low,False,2023-08-04 02:53:29],
485 485  
401 +[245,211,30,Low,False,2023-08-04 02:54:29],
486 486  
487 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
403 +[57,700,30,Low,False,2023-08-04 02:55:29],
488 488  
405 +[361,164,30,Low,True,2023-08-04 02:56:00],
489 489  
490 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
407 +[337,184,30,Low,False,2023-08-04 02:56:40],
491 491  
492 -* (((
493 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
494 -)))
495 -* (((
496 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
497 -)))
409 +[20,4458,30,Low,False,2023-08-04 02:57:40],
498 498  
499 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
411 +[362,173,30,Low,False,2023-08-04 02:58:53],
500 500  
501 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
502 502  
414 +**History read from serial port:**
503 503  
504 -=== 2.6.2 Unix TimeStamp ===
416 +[[image:image-20230805145056-3.png]]
505 505  
506 506  
507 -LDS12-LB uses Unix TimeStamp format based on
419 +=== 2.3.4 Decode payload in The Things Network ===
508 508  
509 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
510 510  
511 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
422 +While using TTN network, you can add the payload format to decode the payload.
512 512  
513 -Below is the converter example
424 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
514 514  
515 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
516 516  
517 -
518 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
519 -
520 -
521 -=== 2.6.3 Set Device Time ===
522 -
523 -
524 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
525 -
526 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
527 -
528 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
529 -
530 -
531 -=== 2.6.4 Poll sensor value ===
532 -
533 -
534 -Users can poll sensor values based on timestamps. Below is the downlink command.
535 -
536 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
537 -|(% colspan="4" style="background-color:#4F81BD;color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
538 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
539 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
540 -
541 541  (((
542 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
428 +The payload decoder function for TTN is here:
543 543  )))
544 544  
545 545  (((
546 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
432 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
547 547  )))
548 548  
549 -(((
550 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
551 -)))
552 552  
553 -(((
554 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
555 -)))
436 +== 2.4 ​Show Data in DataCake IoT Server ==
556 556  
557 557  
558 -== 2.7 Frequency Plans ==
559 -
560 -
561 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
562 -
563 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
564 -
565 -
566 -== 2.8 LiDAR ToF Measurement ==
567 -
568 -=== 2.8.1 Principle of Distance Measurement ===
569 -
570 -
571 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
572 -
573 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
574 -
575 -
576 -=== 2.8.2 Distance Measurement Characteristics ===
577 -
578 -
579 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
580 -
581 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
582 -
583 -
584 584  (((
585 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
440 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
586 586  )))
587 587  
443 +
588 588  (((
589 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
445 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
590 590  )))
591 591  
592 592  (((
593 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
449 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
594 594  )))
595 595  
596 596  
597 -(((
598 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
599 -)))
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
600 600  
601 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
602 602  
603 -(((
604 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
605 -)))
456 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
606 606  
607 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
608 608  
609 -(((
610 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
611 -)))
459 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
612 612  
461 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
613 613  
614 -=== 2.8.3 Notice of usage ===
463 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
615 615  
616 616  
617 -Possible invalid /wrong reading for LiDAR ToF tech:
466 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
618 618  
619 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
620 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
621 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
622 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
468 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
623 623  
624 -=== 2.8.4  Reflectivity of different objects ===
625 625  
471 +== 2.5 Frequency Plans ==
626 626  
627 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
628 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
629 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
630 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
631 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
632 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
633 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
634 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
635 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
636 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
637 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
638 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
639 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
640 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
641 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
642 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
643 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
644 -Unpolished white metal surface
645 -)))|(% style="width:93px" %)130%
646 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
647 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
648 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
649 649  
650 -= 3. Configure LDS12-LB =
474 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
651 651  
476 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
477 +
478 +
479 += 3. Configure DS20L =
480 +
652 652  == 3.1 Configure Methods ==
653 653  
654 654  
655 -LDS12-LB supports below configure method:
484 +DS20L supports below configure method:
656 656  
657 657  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
658 658  
... ... @@ -674,10 +674,10 @@
674 674  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
675 675  
676 676  
677 -== 3.3 Commands special design for LDS12-LB ==
506 +== 3.3 Commands special design for DS20L ==
678 678  
679 679  
680 -These commands only valid for LDS12-LB, as below:
509 +These commands only valid for DS20L, as below:
681 681  
682 682  
683 683  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -719,18 +719,16 @@
719 719  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
720 720  )))
721 721  * (((
722 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
723 -
724 -
725 -
551 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
726 726  )))
727 727  
554 +
728 728  === 3.3.2 Set Interrupt Mode ===
729 729  
730 730  
731 -Feature, Set Interrupt mode for PA8 of pin.
558 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
732 732  
733 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
560 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
734 734  
735 735  (% style="color:blue" %)**AT Command: AT+INTMOD**
736 736  
... ... @@ -741,7 +741,11 @@
741 741  OK
742 742  the mode is 0 =Disable Interrupt
743 743  )))
744 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
571 +|(% style="width:154px" %)(((
572 +AT+INTMOD=3
573 +
574 +(default)
575 +)))|(% style="width:196px" %)(((
745 745  Set Transmit Interval
746 746  0. (Disable Interrupt),
747 747  ~1. (Trigger by rising and falling edge)
... ... @@ -759,37 +759,78 @@
759 759  
760 760  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
761 761  
762 -=== 3.3.3  Set Power Output Duration ===
763 763  
764 -Control the output duration 3V3 . Before each sampling, device will
765 765  
766 -~1. first enable the power output to external sensor,
595 +== 3.3.3 Set work mode ==
767 767  
768 -2. keep it on as per duration, read sensor value and construct uplink payload
769 769  
770 -3. final, close the power output.
598 +Feature: Switch working mode
771 771  
772 -(% style="color:blue" %)**AT Command: AT+3V3T**
600 +(% style="color:blue" %)**AT Command: AT+MOD**
773 773  
774 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
775 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
776 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
602 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
603 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response**
604 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
605 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
777 777  OK
778 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
779 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
780 780  
781 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
782 -Format: Command Code (0x07) followed by 3 bytes.
608 +Attention:Take effect after ATZ
609 +)))
783 783  
784 -The first byte is 01,the second and third bytes are the time to turn on.
611 +(% style="color:blue" %)**Downlink Command:**
785 785  
786 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
787 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
613 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
788 788  
615 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
616 +
617 +
618 +=== 3.3.4 Set threshold and threshold mode ===
619 +
620 +
621 +Feature, Set threshold and threshold mode
622 +
623 +When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms.
624 +
625 +**AT Command: AT+DOL**
626 +
627 +(% border="1" cellspacing="4" style="width:571.818px" %)
628 +|(% style="width:172px" %)**Command Example**|(% style="width:279px" %)**Function**|(% style="width:118px" %)**Response**
629 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
630 +0,0,0,0,400
631 +
632 +OK
633 +)))
634 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
635 +
636 +
637 +(% border="1" cellspacing="4" style="width:668.818px" %)
638 +|(% rowspan="11" style="width:166px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits
639 +|(% style="width:251px" %)1:Use upper and lower limits
640 +|(% style="width:251px" %)2:Less than the lower limit
641 +|(% style="width:251px" %)3:Greater than the lower limit
642 +|(% style="width:251px" %)4:Less than the upper limit
643 +|(% style="width:251px" %)5: Greater than the upper limit
644 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
645 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
646 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
647 +|(% style="width:251px" %)1 Person or object counting statistics
648 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
649 +0~~10000ms
650 +
651 +
652 +)))
653 +
654 +**Downlink Command: 0x07**
655 +
656 +Format: Command Code (0x07) followed by 9bytes.
657 +
658 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
659 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
660 +
789 789  = 4. Battery & Power Consumption =
790 790  
791 791  
792 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
664 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
793 793  
794 794  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
795 795  
... ... @@ -798,7 +798,7 @@
798 798  
799 799  
800 800  (% class="wikigeneratedid" %)
801 -User can change firmware LDS12-LB to:
673 +User can change firmware DS20L to:
802 802  
803 803  * Change Frequency band/ region.
804 804  
... ... @@ -806,7 +806,7 @@
806 806  
807 807  * Fix bugs.
808 808  
809 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
681 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
810 810  
811 811  Methods to Update Firmware:
812 812  
... ... @@ -816,10 +816,10 @@
816 816  
817 817  = 6. FAQ =
818 818  
819 -== 6.1 What is the frequency plan for LDS12-LB? ==
691 +== 6.1 What is the frequency plan for DS20L? ==
820 820  
821 821  
822 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
694 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
823 823  
824 824  
825 825  = 7. Trouble Shooting =
... ... @@ -854,7 +854,7 @@
854 854  = 8. Order Info =
855 855  
856 856  
857 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
729 +Part Number: (% style="color:blue" %)**DS20L-XXX**
858 858  
859 859  (% style="color:red" %)**XXX**(%%): **The default frequency band**
860 860  
... ... @@ -879,7 +879,7 @@
879 879  
880 880  (% style="color:#037691" %)**Package Includes**:
881 881  
882 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
754 +* DS20L LoRaWAN Smart Distance Detector x 1
883 883  
884 884  (% style="color:#037691" %)**Dimension and weight**:
885 885  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content