Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.13
edited by Xiaoling
on 2023/07/15 15:47
Change comment: There is no comment for this version
To version 82.11
edited by Xiaoling
on 2023/06/14 17:02
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -127,7 +127,7 @@
127 127  
128 128  
129 129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
130 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 131  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 132  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 133  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -158,6 +158,7 @@
158 158  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159 159  
160 160  
161 +
161 161  == 1.9 Mechanical ==
162 162  
163 163  
... ... @@ -173,6 +173,7 @@
173 173  (% style="color:blue" %)**Probe Mechanical:**
174 174  
175 175  
177 +
176 176  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 177  
178 178  
... ... @@ -192,7 +192,7 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
197 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
196 196  
197 197  
198 198  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -239,75 +239,6 @@
239 239  == 2.3 ​Uplink Payload ==
240 240  
241 241  
242 -=== 2.3.1 Device Status, FPORT~=5 ===
243 -
244 -
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
246 -
247 -The Payload format is as below.
248 -
249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
251 -**Size(bytes)**
252 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
254 -
255 -Example parse in TTNv3
256 -
257 -**Sensor Model**: For LDS12-LB, this value is 0x24
258 -
259 -**Firmware Version**: 0x0100, Means: v1.0.0 version
260 -
261 -**Frequency Band**:
262 -
263 -0x01: EU868
264 -
265 -0x02: US915
266 -
267 -0x03: IN865
268 -
269 -0x04: AU915
270 -
271 -0x05: KZ865
272 -
273 -0x06: RU864
274 -
275 -0x07: AS923
276 -
277 -0x08: AS923-1
278 -
279 -0x09: AS923-2
280 -
281 -0x0a: AS923-3
282 -
283 -0x0b: CN470
284 -
285 -0x0c: EU433
286 -
287 -0x0d: KR920
288 -
289 -0x0e: MA869
290 -
291 -**Sub-Band**:
292 -
293 -AU915 and US915:value 0x00 ~~ 0x08
294 -
295 -CN470: value 0x0B ~~ 0x0C
296 -
297 -Other Bands: Always 0x00
298 -
299 -**Battery Info**:
300 -
301 -Check the battery voltage.
302 -
303 -Ex1: 0x0B45 = 2885mV
304 -
305 -Ex2: 0x0B49 = 2889mV
306 -
307 -
308 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
309 -
310 -
311 311  (((
312 312  LDS12-LB will uplink payload via LoRaWAN with below payload format: 
313 313  )))
... ... @@ -316,22 +316,23 @@
316 316  Uplink payload includes in total 11 bytes.
317 317  )))
318 318  
252 +
319 319  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
320 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
321 321  **Size(bytes)**
322 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
323 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
324 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
325 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
326 -[[Interrupt flag & Interrupt_level||anchor="HInterruptPin26A0InterruptLevel"]]
327 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
328 -[[Message Type>>||anchor="HMessageType"]]
256 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
257 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
258 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
259 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
260 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
261 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
262 +[[Message Type>>||anchor="H2.3.7MessageType"]]
329 329  )))
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
332 332  
333 333  
334 -==== (% style="color:blue" %)**Battery Info**(%%) ====
268 +=== 2.3.1 Battery Info ===
335 335  
336 336  
337 337  Check the battery voltage for LDS12-LB.
... ... @@ -341,7 +341,7 @@
341 341  Ex2: 0x0B49 = 2889mV
342 342  
343 343  
344 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
278 +=== 2.3.2 DS18B20 Temperature sensor ===
345 345  
346 346  
347 347  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -354,7 +354,7 @@
354 354  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
355 355  
356 356  
357 -==== (% style="color:blue" %)**Distance**(%%) ====
291 +=== 2.3.3 Distance ===
358 358  
359 359  
360 360  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -365,7 +365,7 @@
365 365  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
366 366  
367 367  
368 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
302 +=== 2.3.4 Distance signal strength ===
369 369  
370 370  
371 371  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -378,12 +378,12 @@
378 378  Customers can judge whether they need to adjust the environment based on the signal strength.
379 379  
380 380  
381 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
315 +=== 2.3.5 Interrupt Pin ===
382 382  
383 383  
384 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
318 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
385 385  
386 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
320 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
387 387  
388 388  **Example:**
389 389  
... ... @@ -392,7 +392,7 @@
392 392  0x01: Interrupt Uplink Packet.
393 393  
394 394  
395 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
329 +=== 2.3.6 LiDAR temp ===
396 396  
397 397  
398 398  Characterize the internal temperature value of the sensor.
... ... @@ -402,7 +402,7 @@
402 402  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
403 403  
404 404  
405 -==== (% style="color:blue" %)**Message Type**(%%) ====
339 +=== 2.3.7 Message Type ===
406 406  
407 407  
408 408  (((
... ... @@ -416,12 +416,13 @@
416 416  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
417 417  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
418 418  |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
419 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
353 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3GetFirmwareVersionInfo"]]
420 420  
421 421  
422 -=== 2.3.3 Decode payload in The Things Network ===
423 423  
357 +=== 2.3.8 Decode payload in The Things Network ===
424 424  
359 +
425 425  While using TTN network, you can add the payload format to decode the payload.
426 426  
427 427  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -569,15 +569,16 @@
569 569  
570 570  The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
571 571  
572 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
573 573  
508 +[[image:1654831757579-263.png]]
574 574  
510 +
575 575  === 2.8.2 Distance Measurement Characteristics ===
576 576  
577 577  
578 578  With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
579 579  
580 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
516 +[[image:1654831774373-275.png]]
581 581  
582 582  
583 583  (((
... ... @@ -597,20 +597,23 @@
597 597  Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
598 598  )))
599 599  
600 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
601 601  
537 +[[image:1654831797521-720.png]]
538 +
539 +
602 602  (((
603 603  In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
604 604  )))
605 605  
606 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
544 +[[image:1654831810009-716.png]]
607 607  
546 +
608 608  (((
609 609  If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
610 610  )))
611 611  
612 612  
613 -=== 2.8.3 Notice of usage ===
552 +=== 2.8.3 Notice of usage: ===
614 614  
615 615  
616 616  Possible invalid /wrong reading for LiDAR ToF tech:
... ... @@ -624,7 +624,7 @@
624 624  
625 625  
626 626  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
627 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
566 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
628 628  |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 629  |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 630  |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
... ... @@ -691,7 +691,7 @@
691 691  )))
692 692  
693 693  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
694 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
633 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
695 695  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
696 696  30000
697 697  OK
... ... @@ -719,9 +719,6 @@
719 719  )))
720 720  * (((
721 721  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
722 -
723 -
724 -
725 725  )))
726 726  
727 727  === 3.3.2 Set Interrupt Mode ===
... ... @@ -734,7 +734,7 @@
734 734  (% style="color:blue" %)**AT Command: AT+INTMOD**
735 735  
736 736  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
737 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
673 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
738 738  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
739 739  0
740 740  OK
... ... @@ -758,33 +758,86 @@
758 758  
759 759  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
760 760  
761 -=== 3.3.3  Set Power Output Duration ===
762 762  
763 -Control the output duration 3V3 . Before each sampling, device will
698 +=== 3.3.3 Get Firmware Version Info ===
764 764  
765 -~1. first enable the power output to external sensor,
766 766  
767 -2. keep it on as per duration, read sensor value and construct uplink payload
701 +Feature: use downlink to get firmware version.
768 768  
769 -3. final, close the power output.
703 +(% style="color:#037691" %)**Downlink Command: 0x26**
770 770  
771 -(% style="color:blue" %)**AT Command: AT+3V3T**
705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
706 +|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
707 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
772 772  
773 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
774 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
775 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
776 -OK
777 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
778 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
709 +* Reply to the confirmation package: 26 01
710 +* Reply to non-confirmed packet: 26 00
779 779  
780 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
781 -Format: Command Code (0x07) followed by 3 bytes.
712 +Device will send an uplink after got this downlink command. With below payload:
782 782  
783 -The first byte is 01,the second and third bytes are the time to turn on.
714 +Configures info payload:
784 784  
785 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
786 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
716 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
717 +|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
718 +**Size(bytes)**
719 +)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
720 +|**Value**|Software Type|(((
721 +Frequency
722 +Band
723 +)))|Sub-band|(((
724 +Firmware
725 +Version
726 +)))|Sensor Type|Reserve|(((
727 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
728 +Always 0x02
729 +)))
787 787  
731 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
732 +
733 +(% style="color:#037691" %)**Frequency Band**:
734 +
735 +*0x01: EU868
736 +
737 +*0x02: US915
738 +
739 +*0x03: IN865
740 +
741 +*0x04: AU915
742 +
743 +*0x05: KZ865
744 +
745 +*0x06: RU864
746 +
747 +*0x07: AS923
748 +
749 +*0x08: AS923-1
750 +
751 +*0x09: AS923-2
752 +
753 +*0xa0: AS923-3
754 +
755 +
756 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
757 +
758 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
759 +
760 +(% style="color:#037691" %)**Sensor Type**:
761 +
762 +0x01: LSE01
763 +
764 +0x02: LDDS75
765 +
766 +0x03: LDDS20
767 +
768 +0x04: LLMS01
769 +
770 +0x05: LSPH01
771 +
772 +0x06: LSNPK01
773 +
774 +0x07: LLDS12
775 +
776 +
788 788  = 4. Battery & Power Consumption =
789 789  
790 790  
... ... @@ -805,7 +805,7 @@
805 805  
806 806  * Fix bugs.
807 807  
808 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
797 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
809 809  
810 810  Methods to Update Firmware:
811 811  
... ... @@ -833,11 +833,11 @@
833 833  
834 834  
835 835  (((
836 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
825 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
837 837  )))
838 838  
839 839  (((
840 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
829 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
841 841  )))
842 842  
843 843  
... ... @@ -846,7 +846,7 @@
846 846  )))
847 847  
848 848  (((
849 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
838 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
850 850  )))
851 851  
852 852  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content