Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023061 4153353-1.png]]2 +[[image:image-20230613133716-2.png||height="717" width="717"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,24 +18,24 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor == 22 22 23 23 24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWANLiDAR ToF (Timeof Flight) DistanceSensor**(%%) for Internet of Things solution. Itis capable to measure thedistancetoanobject as closeas 10 centimeters(+/- 5cm up to6m)andasfar as 12 meters(+/-1% startingat6m)!. TheLiDAR probeuseslaserinductiontechnologyfordistancemeasurement.25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server. 25 25 26 -The LDS12-LBcan be applied toscenariossuch as horizontal distancemeasurement, parkingmanagementsystem,objectproximityandpresencedetection,intelligent trashcan management system,robotobstacle avoidance,automaticcontrol,sewer,etc.27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 27 27 28 - Itdetects the distancebetweenemeasured object andthe sensor,anduploadsthevalueviawireless toLoRaWAN IoT Server.29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers. 29 29 30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 31 32 - LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 - LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]39 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,16 +44,19 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 48 +* Liquid Level Measurement by Ultrasonic technology 49 +* Measure through container, No need to contact Liquid 50 +* Valid level range 20mm - 2000mm 51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 52 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 57 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 60 + 57 57 == 1.3 Specification == 58 58 59 59 ... ... @@ -62,23 +62,6 @@ 62 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 63 * Operating Temperature: -40 ~~ 85°C 64 64 65 -(% style="color:#037691" %)**Probe Specification:** 66 - 67 -* Storage temperature:-20℃~~75℃ 68 -* Operating temperature : -20℃~~60℃ 69 -* Measure Distance: 70 -** 0.1m ~~ 12m @ 90% Reflectivity 71 -** 0.1m ~~ 4m @ 10% Reflectivity 72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution : 5mm 74 -* Ambient light immunity : 70klux 75 -* Enclosure rating : IP65 76 -* Light source : LED 77 -* Central wavelength : 850nm 78 -* FOV : 3.6° 79 -* Material of enclosure : ABS+PC 80 -* Wire length : 25cm 81 - 82 82 (% style="color:#037691" %)**LoRa Spec:** 83 83 84 84 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -99,292 +99,322 @@ 99 99 * Sleep Mode: 5uA @ 3.3v 100 100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 101 102 -== 1.4 Applications == 103 103 90 +== 1.4 Suitable Container & Liquid == 104 104 105 -* Horizontal distance measurement 106 -* Parking management system 107 -* Object proximity and presence detection 108 -* Intelligent trash can management system 109 -* Robot obstacle avoidance 110 -* Automatic control 111 -* Sewer 112 112 113 -(% style="display:none" %) 93 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 94 +* Container shape is regular, and surface is smooth. 95 +* Container Thickness: 96 +** Pure metal material. 2~~8mm, best is 3~~5mm 97 +** Pure non metal material: <10 mm 98 +* Pure liquid without irregular deposition. 114 114 115 -== 1.5 Sleep mode and working mode == 116 116 101 +(% style="display:none" %) 117 117 118 - (%style="color:blue"%)**DeepSleep Mode: **(%%)Sensor doesn't have anyLoRaWANactivate. This mode is used for storage and shipping to save battery life.103 +== 1.5 Install DDS20-LB == 119 119 120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 121 121 106 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 122 122 123 -= =1.6Button&LEDs==108 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 124 124 110 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 125 125 126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 127 127 113 +((( 114 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 115 +))) 128 128 129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 117 +((( 118 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 134 134 ))) 135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 139 -))) 140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 141 142 - ==1.7 BLE connection ==121 +[[image:image-20230613143052-5.png]] 143 143 144 144 145 - LDS12-LBsupportBLEremote configure.124 +No polish needed if the container is shine metal surface without paint or non-metal container. 146 146 147 - BLE can beused to configuretheparameter of sensor or see the console output from sensor. BLE will be only activate on below case:126 +[[image:image-20230613143125-6.png]] 148 148 149 -* Press button to send an uplink 150 -* Press button to active device. 151 -* Device Power on or reset. 152 152 153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 129 +((( 130 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 131 +))) 154 154 133 +((( 134 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 135 +))) 155 155 156 -== 1.8 Pin Definitions == 137 +((( 138 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 139 +))) 157 157 158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 141 +((( 142 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 143 +))) 159 159 160 160 161 -== 1.9 Mechanical == 146 +((( 147 +(% style="color:blue" %)**LED Status:** 148 +))) 162 162 150 +* ((( 151 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 152 +))) 163 163 164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 154 +* ((( 155 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 156 +))) 157 +* ((( 158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 159 +))) 165 165 161 +((( 162 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 163 +))) 166 166 167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 168 168 166 +((( 167 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 168 +))) 169 169 170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 171 171 171 +((( 172 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 173 +))) 172 172 173 -(% style="color:blue" %)**Probe Mechanical:** 175 +((( 176 +Prepare Eproxy AB glue. 177 +))) 174 174 179 +((( 180 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 181 +))) 175 175 176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 183 +((( 184 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 185 +))) 177 177 187 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 178 178 179 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 180 180 181 -== 2.1 How it works == 190 +((( 191 +(% style="color:red" %)**Note :** 182 182 193 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 194 +))) 183 183 184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 196 +((( 197 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 198 +))) 185 185 186 -(% style="display:none" %) (%%) 187 187 188 -== 2.2Quick guidetoconnect to LoRaWANserver(OTAA)==201 +== 1.6 Applications == 189 189 190 190 191 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Belowis the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]asa LoRaWAN gatewayinthis example.204 +* Smart liquid control solution 192 192 193 - TheLPS8v2 isalready setto connectedto[[TTN network >>url:https://console.cloud.thethings.network/]], so what weneed to now is configure the TTN server.206 +* Smart liquefied gas solution 194 194 195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 196 196 209 +== 1.7 Precautions == 197 197 198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 199 199 200 - EachLDS12-LBisshippedwith a stickerwiththe default deviceEUIasbelow:212 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 201 201 202 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]214 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 203 203 216 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 204 204 205 - Youcan enter thiskeyinthe LoRaWAN Serverportal.Below is TTN screen shot:218 +(% style="display:none" %) 206 206 220 +== 1.8 Sleep mode and working mode == 207 207 208 -(% style="color:blue" %)**Register the device** 209 209 210 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]223 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 211 211 225 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 212 212 213 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 214 214 215 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]228 +== 1.9 Button & LEDs == 216 216 217 217 218 - (%style="color:blue"%)**AddAPPEUI intheplication**231 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 219 219 220 220 221 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 234 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 235 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 236 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 237 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 238 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 239 +))) 240 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 241 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 242 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 243 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 244 +))) 245 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 222 222 223 223 224 - (% style="color:blue"%)**Add APP KEY**248 +== 1.10 BLE connection == 225 225 226 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 227 227 251 +DDS20-LB support BLE remote configure. 228 228 229 - (%style="color:blue"%)**Step2:**(%%)Activate onLDS12-LB253 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 230 230 255 +* Press button to send an uplink 256 +* Press button to active device. 257 +* Device Power on or reset. 231 231 232 - Pressthebuttonfor5secondstoactivate theLDS12-LB.259 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 233 233 234 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 235 235 236 - Afterjoinsuccess,it will start toupload messages to TTN and you canseethe messages in the panel.262 +== 1.11 Pin Definitions == 237 237 264 +[[image:image-20230523174230-1.png]] 238 238 239 -== 2.3 Uplink Payload == 240 240 267 +== 1.12 Mechanical == 241 241 242 -=== 2.3.1 Device Status, FPORT~=5 === 243 243 270 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 244 244 245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 246 246 247 - ThePayloadformatisasbelow.273 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 248 248 249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 250 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 251 -**Size(bytes)** 252 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 254 254 255 -E xampleparseinTTNv3276 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 256 256 257 -**Sensor Model**: For LDS12-LB, this value is 0x24 258 258 259 - **FirmwareVersion**:0x0100,Means: v1.0.0 version279 +(% style="color:blue" %)**Probe Mechanical:** 260 260 261 - **Frequency Band**:281 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 262 262 263 -0x01: EU868 264 264 265 - 0x02: US915284 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 266 266 267 -0x03: IN865 268 268 269 -0 x04:AU915287 += 2. Configure DDS20-LB to connect to LoRaWAN network = 270 270 271 - 0x05:KZ865289 +== 2.1 How it works == 272 272 273 -0x06: RU864 274 274 275 -0 x07:AS923292 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 276 276 277 - 0x08:AS923-1294 +(% style="display:none" %) (%%) 278 278 279 - 0x09:AS923-2296 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 280 280 281 -0x0a: AS923-3 282 282 283 - 0x0b:CN470299 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 284 284 285 - 0x0c:EU433301 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 286 286 287 -0 x0d:KR920303 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 288 288 289 -0x0e: MA869 290 290 291 -**S ub-Band**:306 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 292 292 293 - AU915andUS915:value0x00~~0x08308 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 294 294 295 - CN470: value0x0B~~0x0C310 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 296 296 297 -Other Bands: Always 0x00 298 298 299 - **BatteryInfo**:313 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 300 300 301 -Check the battery voltage. 302 302 303 - Ex1:0x0B45=2885mV316 +(% style="color:blue" %)**Register the device** 304 304 305 - Ex2:0x0B49=2889mV318 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 306 306 307 307 308 -= ==2.3.2UplinkPayload,FPORT~=2===321 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 309 309 323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 310 310 311 -((( 312 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 313 -))) 314 314 315 -((( 316 -Uplink payload includes in total 11 bytes. 317 -))) 326 +(% style="color:blue" %)**Add APP EUI in the application** 318 318 319 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 320 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 321 -**Size(bytes)** 322 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 323 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 324 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 325 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 326 -[[Interrupt flag & Interrupt_level||anchor="HInterruptPin26A0InterruptLevel"]] 327 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 328 -[[Message Type>>||anchor="HMessageType"]] 329 -))) 330 330 331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]329 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 332 332 333 333 334 - ====(% style="color:blue" %)**BatteryInfo**(%%) ====332 +(% style="color:blue" %)**Add APP KEY** 335 335 334 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 336 336 337 -Check the battery voltage for LDS12-LB. 338 338 339 - Ex1:0x0B45=2885mV337 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 340 340 341 -Ex2: 0x0B49 = 2889mV 342 342 340 +Press the button for 5 seconds to activate the DDS20-LB. 343 343 344 -= ===(% style="color:blue" %)**DS18B20Temperature sensor**(%%)====342 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 345 345 344 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 346 346 347 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 348 348 347 +== 2.3 Uplink Payload == 349 349 350 -**Example**: 351 351 352 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 350 +((( 351 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 352 +))) 353 353 354 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 354 +((( 355 +Uplink payload includes in total 8 bytes. 356 +))) 355 355 358 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 359 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 360 +**Size(bytes)** 361 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 362 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 363 +[[Distance>>||anchor="H2.3.2A0Distance"]] 364 +(unit: mm) 365 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 366 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 367 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 356 356 357 - ==== (% style="color:blue"%)**Distance**(%%)====369 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 358 358 359 359 360 - Representsthe distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200.Inactual use, whenthesignal strengthvalue Strength.372 +=== 2.3.1 Battery Info === 361 361 362 362 363 - **Example**:375 +Check the battery voltage for DDS20-LB. 364 364 365 - If the data you get from the register is 0x0B0xEA, the distance between the sensor and the measured object is0BEA(H) = 3050(D)/10=305cm.377 +Ex1: 0x0B45 = 2885mV 366 366 379 +Ex2: 0x0B49 = 2889mV 367 367 368 -==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 369 369 382 +=== 2.3.2 Distance === 370 370 371 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 372 372 385 +((( 386 +Get the distance. Flat object range 20mm - 2000mm. 387 +))) 373 373 374 -**Example**: 389 +((( 390 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 375 375 376 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 392 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 393 +))) 377 377 378 - Customerscanjudge whethertheyneed to adjusttheenvironmentbasedon the signalstrength.395 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 379 379 397 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 380 380 381 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 382 382 400 +=== 2.3.3 Interrupt Pin === 383 383 402 + 384 384 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 385 385 386 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 387 - 388 388 **Example:** 389 389 390 390 0x00: Normal uplink packet. ... ... @@ -392,59 +392,53 @@ 392 392 0x01: Interrupt Uplink Packet. 393 393 394 394 395 -=== =(%style="color:blue"%)**LiDAR temp**(%%)====412 +=== 2.3.4 DS18B20 Temperature sensor === 396 396 397 397 398 - Characterizetheinternaltemperature valueofthesensor.415 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 399 399 400 -**Example: ** 401 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 402 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 417 +**Example**: 403 403 419 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 404 404 405 - ====(% style="color:blue"%)**MessageType**(%%) ====421 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 406 406 407 407 424 +=== 2.3.5 Sensor Flag === 425 + 426 + 408 408 ((( 409 - Fora normal uplink payload, themessagetypeis always0x01.428 +0x01: Detect Ultrasonic Sensor 410 410 ))) 411 411 412 412 ((( 413 - ValidMessage Type:432 +0x00: No Ultrasonic Sensor 414 414 ))) 415 415 416 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 417 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 418 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 419 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 420 420 436 +=== 2.3.6 Decode payload in The Things Network === 421 421 422 -=== 2.3.3 Decode payload in The Things Network === 423 423 424 - 425 425 While using TTN network, you can add the payload format to decode the payload. 426 426 427 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]441 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 428 428 443 +The payload decoder function for TTN V3 is here: 429 429 430 430 ((( 431 -T hepayloaddecoderfunctionforTTNis here:446 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 432 432 ))) 433 433 434 -((( 435 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 436 -))) 437 437 450 +== 2.4 Uplink Interval == 438 438 439 -== 2.4 Uplink Interval == 440 440 453 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 441 441 442 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 443 443 456 +== 2.5 Show Data in DataCake IoT Server == 444 444 445 -== 2.5 Show Data in DataCake IoT Server == 446 446 447 - 448 448 ((( 449 449 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 450 450 ))) ... ... @@ -467,7 +467,7 @@ 467 467 468 468 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 469 469 470 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**481 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 471 471 472 472 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 473 473 ... ... @@ -480,19 +480,19 @@ 480 480 == 2.6 Datalog Feature == 481 481 482 482 483 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.494 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 484 484 485 485 486 486 === 2.6.1 Ways to get datalog via LoRaWAN === 487 487 488 488 489 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.500 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 490 490 491 491 * ((( 492 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.503 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 493 493 ))) 494 494 * ((( 495 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.506 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 496 496 ))) 497 497 498 498 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -503,7 +503,7 @@ 503 503 === 2.6.2 Unix TimeStamp === 504 504 505 505 506 - LDS12-LB uses Unix TimeStamp format based on517 +DDS20-LB uses Unix TimeStamp format based on 507 507 508 508 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 509 509 ... ... @@ -522,7 +522,7 @@ 522 522 523 523 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 524 524 525 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).536 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 526 526 527 527 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 528 528 ... ... @@ -550,7 +550,7 @@ 550 550 ))) 551 551 552 552 ((( 553 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.564 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 554 554 ))) 555 555 556 556 ... ... @@ -557,101 +557,17 @@ 557 557 == 2.7 Frequency Plans == 558 558 559 559 560 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.571 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 561 561 562 562 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 563 563 564 564 565 -= =2.8LiDAR ToF Measurement==576 += 3. Configure DDS20-LB = 566 566 567 -=== 2.8.1 Principle of Distance Measurement === 568 - 569 - 570 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 571 - 572 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 573 - 574 - 575 -=== 2.8.2 Distance Measurement Characteristics === 576 - 577 - 578 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 579 - 580 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 581 - 582 - 583 -((( 584 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 585 -))) 586 - 587 -((( 588 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 589 -))) 590 - 591 -((( 592 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 593 -))) 594 - 595 - 596 -((( 597 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 598 -))) 599 - 600 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 601 - 602 -((( 603 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 604 -))) 605 - 606 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 607 - 608 -((( 609 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 610 -))) 611 - 612 - 613 -=== 2.8.3 Notice of usage === 614 - 615 - 616 -Possible invalid /wrong reading for LiDAR ToF tech: 617 - 618 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 619 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 620 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 621 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 622 - 623 -=== 2.8.4 Reflectivity of different objects === 624 - 625 - 626 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 627 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 628 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 629 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 630 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 631 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 632 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 633 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 634 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 635 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 636 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 637 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 638 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 639 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 640 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 641 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 642 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 643 -Unpolished white metal surface 644 -)))|(% style="width:93px" %)130% 645 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 646 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 647 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 648 - 649 -= 3. Configure LDS12-LB = 650 - 651 651 == 3.1 Configure Methods == 652 652 653 653 654 - LDS12-LB supports below configure method:581 +DDS20-LB supports below configure method: 655 655 656 656 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 657 657 ... ... @@ -659,6 +659,7 @@ 659 659 660 660 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 661 661 589 + 662 662 == 3.2 General Commands == 663 663 664 664 ... ... @@ -673,10 +673,10 @@ 673 673 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 674 674 675 675 676 -== 3.3 Commands special design for LDS12-LB ==604 +== 3.3 Commands special design for DDS20-LB == 677 677 678 678 679 -These commands only valid for LDS12-LB, as below:607 +These commands only valid for DDS20-LB, as below: 680 680 681 681 682 682 === 3.3.1 Set Transmit Interval Time === ... ... @@ -691,7 +691,7 @@ 691 691 ))) 692 692 693 693 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 694 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**622 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 695 695 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 696 696 30000 697 697 OK ... ... @@ -734,7 +734,7 @@ 734 734 (% style="color:blue" %)**AT Command: AT+INTMOD** 735 735 736 736 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 737 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**665 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 738 738 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 739 739 0 740 740 OK ... ... @@ -758,37 +758,11 @@ 758 758 759 759 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 760 760 761 -=== 3.3.3 Set Power Output Duration === 762 762 763 -Control the output duration 3V3 . Before each sampling, device will 764 - 765 -~1. first enable the power output to external sensor, 766 - 767 -2. keep it on as per duration, read sensor value and construct uplink payload 768 - 769 -3. final, close the power output. 770 - 771 -(% style="color:blue" %)**AT Command: AT+3V3T** 772 - 773 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 774 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 775 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 776 -OK 777 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 778 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 779 - 780 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 781 -Format: Command Code (0x07) followed by 3 bytes. 782 - 783 -The first byte is 01,the second and third bytes are the time to turn on. 784 - 785 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 786 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 787 - 788 788 = 4. Battery & Power Consumption = 789 789 790 790 791 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.693 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 792 792 793 793 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 794 794 ... ... @@ -797,7 +797,7 @@ 797 797 798 798 799 799 (% class="wikigeneratedid" %) 800 -User can change firmware LDS12-LB to:702 +User can change firmware DDS20-LB to: 801 801 802 802 * Change Frequency band/ region. 803 803 ... ... @@ -805,7 +805,7 @@ 805 805 806 806 * Fix bugs. 807 807 808 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**710 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 809 809 810 810 Methods to Update Firmware: 811 811 ... ... @@ -813,40 +813,42 @@ 813 813 814 814 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 815 815 718 + 816 816 = 6. FAQ = 817 817 818 -== 6.1 What is the frequency plan for LDS12-LB? ==721 +== 6.1 What is the frequency plan for DDS20-LB? == 819 819 820 820 821 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]724 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 822 822 823 823 824 -= 7.Trouble Shooting=727 +== 6.2 Can I use DDS20-LB in condensation environment? == 825 825 826 -== 7.1 AT Command input doesn't work == 827 827 730 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 828 828 829 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 830 830 733 += 7. Trouble Shooting = 831 831 832 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==735 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 833 833 834 834 835 -((( 836 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 837 -))) 738 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 838 838 839 -((( 840 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 841 -))) 842 842 741 +== 7.2 AT Command input doesn't work == 843 843 844 -((( 845 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 846 -))) 847 847 744 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 745 + 746 + 747 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 748 + 749 + 848 848 ((( 849 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 751 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 752 + 753 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 850 850 ))) 851 851 852 852 ... ... @@ -853,7 +853,7 @@ 853 853 = 8. Order Info = 854 854 855 855 856 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**760 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 857 857 858 858 (% style="color:red" %)**XXX**(%%): **The default frequency band** 859 859 ... ... @@ -873,12 +873,13 @@ 873 873 874 874 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 875 875 780 + 876 876 = 9. Packing Info = 877 877 878 878 879 879 (% style="color:#037691" %)**Package Includes**: 880 880 881 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1786 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 882 882 883 883 (% style="color:#037691" %)**Dimension and weight**: 884 884 ... ... @@ -890,6 +890,7 @@ 890 890 891 891 * Weight / pcs : g 892 892 798 + 893 893 = 10. Support = 894 894 895 895
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content