Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.13
edited by Xiaoling
on 2023/07/15 15:47
Change comment: There is no comment for this version
To version 79.14
edited by Xiaoling
on 2023/06/13 15:20
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,24 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,14 +44,16 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
48 +* Liquid Level Measurement by Ultrasonic technology
49 +* Measure through container, No need to contact Liquid
50 +* Valid level range 20mm - 2000mm
51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  == 1.3 Specification ==
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,28 +99,141 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -== 1.4 Applications ==
88 +== 1.4 Suitable Container & Liquid ==
103 103  
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
91 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
92 +* Container shape is regular, and surface is smooth.
93 +* Container Thickness:
94 +** Pure metal material.  2~~8mm, best is 3~~5mm
95 +** Pure non metal material: <10 mm
96 +* Pure liquid without irregular deposition.(% style="display:none" %)
112 112  
113 -(% style="display:none" %)
98 +== 1.5 Install DDS20-LB ==
114 114  
115 -== 1.5 Sleep mode and working mode ==
116 116  
101 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
117 117  
103 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
104 +
105 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
106 +
107 +
108 +(((
109 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
110 +)))
111 +
112 +(((
113 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
114 +)))
115 +
116 +[[image:image-20230613143052-5.png]]
117 +
118 +
119 +No polish needed if the container is shine metal surface without paint or non-metal container.
120 +
121 +[[image:image-20230613143125-6.png]]
122 +
123 +
124 +(((
125 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
126 +)))
127 +
128 +(((
129 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
130 +)))
131 +
132 +(((
133 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
134 +)))
135 +
136 +(((
137 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
138 +)))
139 +
140 +
141 +(((
142 +(% style="color:red" %)**LED Status:**
143 +)))
144 +
145 +* (((
146 +Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
147 +)))
148 +
149 +* (((
150 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
151 +)))
152 +* (((
153 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
154 +)))
155 +
156 +(((
157 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
158 +)))
159 +
160 +
161 +(((
162 +(% style="color:red" %)**Note 2:**
163 +)))
164 +
165 +(((
166 +(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
168 +
169 +
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
172 +)))
173 +
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
177 +
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
181 +
182 +(((
183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
184 +)))
185 +
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
187 +
188 +
189 +(((
190 +(% style="color:red" %)**Note 1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
191 +)))
192 +
193 +(((
194 +(% style="color:red" %)**Note 2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
195 +)))
196 +
197 +
198 +== 1.6 Applications ==
199 +
200 +
201 +* Smart liquid control solution.
202 +
203 +* Smart liquefied gas solution.
204 +
205 +== 1.7 Precautions ==
206 +
207 +
208 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
209 +
210 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
211 +
212 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
213 +
214 +== 1.8 Sleep mode and working mode ==
215 +
216 +
118 118  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 119  
120 120  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 121  
122 122  
123 -== 1.6 Button & LEDs ==
222 +== 1.9 Button & LEDs ==
124 124  
125 125  
126 126  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -127,7 +127,7 @@
127 127  
128 128  
129 129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
229 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 131  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 132  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 133  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -139,10 +139,10 @@
139 139  )))
140 140  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 141  
142 -== 1.7 BLE connection ==
241 +== 1.10 BLE connection ==
143 143  
144 144  
145 -LDS12-LB support BLE remote configure.
244 +DDS20-LB support BLE remote configure.
146 146  
147 147  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 148  
... ... @@ -153,12 +153,12 @@
153 153  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 154  
155 155  
156 -== 1.8 Pin Definitions ==
255 +== 1.11 Pin Definitions ==
157 157  
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
257 +[[image:image-20230523174230-1.png]]
159 159  
160 160  
161 -== 1.9 Mechanical ==
260 +== 1.12 Mechanical ==
162 162  
163 163  
164 164  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -172,16 +172,18 @@
172 172  
173 173  (% style="color:blue" %)**Probe Mechanical:**
174 174  
274 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
175 175  
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 177  
277 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
178 178  
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 180  
280 += 2. Configure DDS20-LB to connect to LoRaWAN network =
281 +
181 181  == 2.1 How it works ==
182 182  
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
285 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 185  
186 186  (% style="display:none" %) (%%)
187 187  
... ... @@ -192,12 +192,12 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
296 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
196 196  
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
299 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
301 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
201 201  
202 202  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203 203  
... ... @@ -226,10 +226,10 @@
226 226  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227 227  
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
330 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
230 230  
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
333 +Press the button for 5 seconds to activate the DDS20-LB.
233 233  
234 234  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235 235  
... ... @@ -236,117 +236,75 @@
236 236  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237 237  
238 238  
239 -== 2.3 ​Uplink Payload ==
340 +== 2.3  ​Uplink Payload ==
240 240  
241 241  
242 -=== 2.3.1 Device Status, FPORT~=5 ===
343 +(((
344 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
345 +)))
243 243  
347 +(((
348 +Uplink payload includes in total 8 bytes.
349 +)))
244 244  
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
246 -
247 -The Payload format is as below.
248 -
249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
351 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
352 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
251 251  **Size(bytes)**
252 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
354 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
355 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
356 +[[Distance>>||anchor="H2.3.2A0Distance"]]
357 +(unit: mm)
358 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
359 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
360 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
254 254  
255 -Example parse in TTNv3
362 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
256 256  
257 -**Sensor Model**: For LDS12-LB, this value is 0x24
258 258  
259 -**Firmware Version**: 0x0100, Means: v1.0.0 version
365 +=== 2.3. Battery Info ===
260 260  
261 -**Frequency Band**:
262 262  
263 -0x01: EU868
368 +Check the battery voltage for DDS20-LB.
264 264  
265 -0x02: US915
266 -
267 -0x03: IN865
268 -
269 -0x04: AU915
270 -
271 -0x05: KZ865
272 -
273 -0x06: RU864
274 -
275 -0x07: AS923
276 -
277 -0x08: AS923-1
278 -
279 -0x09: AS923-2
280 -
281 -0x0a: AS923-3
282 -
283 -0x0b: CN470
284 -
285 -0x0c: EU433
286 -
287 -0x0d: KR920
288 -
289 -0x0e: MA869
290 -
291 -**Sub-Band**:
292 -
293 -AU915 and US915:value 0x00 ~~ 0x08
294 -
295 -CN470: value 0x0B ~~ 0x0C
296 -
297 -Other Bands: Always 0x00
298 -
299 -**Battery Info**:
300 -
301 -Check the battery voltage.
302 -
303 303  Ex1: 0x0B45 = 2885mV
304 304  
305 305  Ex2: 0x0B49 = 2889mV
306 306  
307 307  
308 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
375 +=== 2.3.2  Distance ===
309 309  
310 310  
311 311  (((
312 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
379 +Get the distance. Flat object range 20mm - 2000mm.
313 313  )))
314 314  
315 315  (((
316 -Uplink payload includes in total 11 bytes.
317 -)))
383 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
318 318  
319 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
320 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
321 -**Size(bytes)**
322 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
323 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
324 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
325 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
326 -[[Interrupt flag & Interrupt_level||anchor="HInterruptPin26A0InterruptLevel"]]
327 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
328 -[[Message Type>>||anchor="HMessageType"]]
385 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
329 329  )))
330 330  
331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
388 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
332 332  
390 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
333 333  
334 -==== (% style="color:blue" %)**Battery Info**(%%) ====
392 +=== 2.3.3  Interrupt Pin ===
335 335  
336 336  
337 -Check the battery voltage for LDS12-LB.
395 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
338 338  
339 -Ex1: 0x0B45 = 2885mV
397 +**Example:**
340 340  
341 -Ex2: 0x0B49 = 2889mV
399 +0x00: Normal uplink packet.
342 342  
401 +0x01: Interrupt Uplink Packet.
343 343  
344 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
345 345  
404 +=== 2.3.4  DS18B20 Temperature sensor ===
346 346  
406 +
347 347  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
348 348  
349 -
350 350  **Example**:
351 351  
352 352  If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -354,97 +354,41 @@
354 354  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
355 355  
356 356  
357 -==== (% style="color:blue" %)**Distance**(%%) ====
416 +=== 2.3.5  Sensor Flag ===
358 358  
359 359  
360 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
361 -
362 -
363 -**Example**:
364 -
365 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
366 -
367 -
368 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
369 -
370 -
371 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
372 -
373 -
374 -**Example**:
375 -
376 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
377 -
378 -Customers can judge whether they need to adjust the environment based on the signal strength.
379 -
380 -
381 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
382 -
383 -
384 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
385 -
386 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
387 -
388 -**Example:**
389 -
390 -0x00: Normal uplink packet.
391 -
392 -0x01: Interrupt Uplink Packet.
393 -
394 -
395 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
396 -
397 -
398 -Characterize the internal temperature value of the sensor.
399 -
400 -**Example: **
401 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
402 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
403 -
404 -
405 -==== (% style="color:blue" %)**Message Type**(%%) ====
406 -
407 -
408 408  (((
409 -For a normal uplink payload, the message type is always 0x01.
420 +0x01: Detect Ultrasonic Sensor
410 410  )))
411 411  
412 412  (((
413 -Valid Message Type:
424 +0x00: No Ultrasonic Sensor
414 414  )))
415 415  
416 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
417 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
418 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
419 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
420 420  
428 +=== 2.3.6  Decode payload in The Things Network ===
421 421  
422 -=== 2.3.3 Decode payload in The Things Network ===
423 423  
424 -
425 425  While using TTN network, you can add the payload format to decode the payload.
426 426  
427 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
433 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
428 428  
435 +The payload decoder function for TTN V3 is here:
429 429  
430 430  (((
431 -The payload decoder function for TTN is here:
438 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
432 432  )))
433 433  
434 -(((
435 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 -)))
437 437  
442 +== 2.4  Uplink Interval ==
438 438  
439 -== 2.4 Uplink Interval ==
440 440  
445 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
441 441  
442 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
443 443  
448 +== 2.5  ​Show Data in DataCake IoT Server ==
444 444  
445 -== 2.5 ​Show Data in DataCake IoT Server ==
446 446  
447 -
448 448  (((
449 449  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
450 450  )))
... ... @@ -467,7 +467,7 @@
467 467  
468 468  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
469 469  
470 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
473 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
471 471  
472 472  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
473 473  
... ... @@ -477,22 +477,23 @@
477 477  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
478 478  
479 479  
483 +
480 480  == 2.6 Datalog Feature ==
481 481  
482 482  
483 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
487 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
484 484  
485 485  
486 486  === 2.6.1 Ways to get datalog via LoRaWAN ===
487 487  
488 488  
489 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
493 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
490 490  
491 491  * (((
492 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
496 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
493 493  )))
494 494  * (((
495 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
499 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
496 496  )))
497 497  
498 498  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -503,7 +503,7 @@
503 503  === 2.6.2 Unix TimeStamp ===
504 504  
505 505  
506 -LDS12-LB uses Unix TimeStamp format based on
510 +DDS20-LB uses Unix TimeStamp format based on
507 507  
508 508  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
509 509  
... ... @@ -522,7 +522,7 @@
522 522  
523 523  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
524 524  
525 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
529 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
526 526  
527 527  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
528 528  
... ... @@ -550,7 +550,7 @@
550 550  )))
551 551  
552 552  (((
553 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
557 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
554 554  )))
555 555  
556 556  
... ... @@ -557,101 +557,17 @@
557 557  == 2.7 Frequency Plans ==
558 558  
559 559  
560 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
564 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
561 561  
562 562  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
563 563  
564 564  
565 -== 2.8 LiDAR ToF Measurement ==
569 += 3. Configure DDS20-LB =
566 566  
567 -=== 2.8.1 Principle of Distance Measurement ===
568 -
569 -
570 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
571 -
572 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
573 -
574 -
575 -=== 2.8.2 Distance Measurement Characteristics ===
576 -
577 -
578 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
579 -
580 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
581 -
582 -
583 -(((
584 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
585 -)))
586 -
587 -(((
588 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
589 -)))
590 -
591 -(((
592 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
593 -)))
594 -
595 -
596 -(((
597 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
598 -)))
599 -
600 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
601 -
602 -(((
603 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
604 -)))
605 -
606 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
607 -
608 -(((
609 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
610 -)))
611 -
612 -
613 -=== 2.8.3 Notice of usage ===
614 -
615 -
616 -Possible invalid /wrong reading for LiDAR ToF tech:
617 -
618 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
619 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
620 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
621 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
622 -
623 -=== 2.8.4  Reflectivity of different objects ===
624 -
625 -
626 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
627 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
628 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
631 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
632 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
633 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
634 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
635 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
636 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
637 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
638 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
639 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
640 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
641 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
642 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
643 -Unpolished white metal surface
644 -)))|(% style="width:93px" %)130%
645 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
646 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
647 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
648 -
649 -= 3. Configure LDS12-LB =
650 -
651 651  == 3.1 Configure Methods ==
652 652  
653 653  
654 -LDS12-LB supports below configure method:
574 +DDS20-LB supports below configure method:
655 655  
656 656  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
657 657  
... ... @@ -673,10 +673,10 @@
673 673  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
674 674  
675 675  
676 -== 3.3 Commands special design for LDS12-LB ==
596 +== 3.3 Commands special design for DDS20-LB ==
677 677  
678 678  
679 -These commands only valid for LDS12-LB, as below:
599 +These commands only valid for DDS20-LB, as below:
680 680  
681 681  
682 682  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -691,7 +691,7 @@
691 691  )))
692 692  
693 693  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
694 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
614 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
695 695  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
696 696  30000
697 697  OK
... ... @@ -719,9 +719,6 @@
719 719  )))
720 720  * (((
721 721  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
722 -
723 -
724 -
725 725  )))
726 726  
727 727  === 3.3.2 Set Interrupt Mode ===
... ... @@ -734,7 +734,7 @@
734 734  (% style="color:blue" %)**AT Command: AT+INTMOD**
735 735  
736 736  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
737 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
654 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
738 738  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
739 739  0
740 740  OK
... ... @@ -758,37 +758,10 @@
758 758  
759 759  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
760 760  
761 -=== 3.3.3  Set Power Output Duration ===
762 -
763 -Control the output duration 3V3 . Before each sampling, device will
764 -
765 -~1. first enable the power output to external sensor,
766 -
767 -2. keep it on as per duration, read sensor value and construct uplink payload
768 -
769 -3. final, close the power output.
770 -
771 -(% style="color:blue" %)**AT Command: AT+3V3T**
772 -
773 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
774 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
775 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
776 -OK
777 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
778 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
779 -
780 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
781 -Format: Command Code (0x07) followed by 3 bytes.
782 -
783 -The first byte is 01,the second and third bytes are the time to turn on.
784 -
785 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
786 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
787 -
788 788  = 4. Battery & Power Consumption =
789 789  
790 790  
791 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
681 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
792 792  
793 793  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
794 794  
... ... @@ -797,7 +797,7 @@
797 797  
798 798  
799 799  (% class="wikigeneratedid" %)
800 -User can change firmware LDS12-LB to:
690 +User can change firmware DDS20-LB to:
801 801  
802 802  * Change Frequency band/ region.
803 803  
... ... @@ -805,48 +805,50 @@
805 805  
806 806  * Fix bugs.
807 807  
808 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
698 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
809 809  
810 810  Methods to Update Firmware:
811 811  
812 -* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
702 +* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
813 813  
814 814  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
815 815  
706 +
816 816  = 6. FAQ =
817 817  
818 -== 6.1 What is the frequency plan for LDS12-LB? ==
709 +== 6.1  What is the frequency plan for DDS20-LB? ==
819 819  
820 820  
821 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
712 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
822 822  
823 823  
824 -= 7Trouble Shooting =
715 +== 6.2  Can I use DDS20-LB in condensation environment? ==
825 825  
826 -== 7.1 AT Command input doesn't work ==
827 827  
718 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
828 828  
829 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
830 830  
721 += 7.  Trouble Shooting =
831 831  
832 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
723 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
833 833  
834 834  
835 -(((
836 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
837 -)))
726 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
838 838  
839 -(((
840 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
841 -)))
842 842  
729 +== 7.2  AT Command input doesn't work ==
843 843  
844 -(((
845 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
846 -)))
847 847  
732 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
733 +
734 +
735 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
736 +
737 +
848 848  (((
849 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
739 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
740 +
741 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
850 850  )))
851 851  
852 852  
... ... @@ -853,7 +853,7 @@
853 853  = 8. Order Info =
854 854  
855 855  
856 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
748 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
857 857  
858 858  (% style="color:red" %)**XXX**(%%): **The default frequency band**
859 859  
... ... @@ -878,7 +878,7 @@
878 878  
879 879  (% style="color:#037691" %)**Package Includes**:
880 880  
881 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
773 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
882 882  
883 883  (% style="color:#037691" %)**Dimension and weight**:
884 884  
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content