Last modified by Mengting Qiu on 2023/12/14 11:15

From version 90.1
edited by Saxer Lin
on 2023/07/15 14:04
Change comment: There is no comment for this version
To version 79.17
edited by Xiaoling
on 2023/06/13 15:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,24 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,16 +44,19 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
48 +* Liquid Level Measurement by Ultrasonic technology
49 +* Measure through container, No need to contact Liquid
50 +* Valid level range 20mm - 2000mm
51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
60 +
57 57  == 1.3 Specification ==
58 58  
59 59  
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,28 +99,141 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -== 1.4 Applications ==
89 +== 1.4 Suitable Container & Liquid ==
103 103  
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
112 112  
113 113  (% style="display:none" %)
114 114  
115 -== 1.5 Sleep mode and working mode ==
101 +== 1.5 Install DDS20-LB ==
116 116  
117 117  
104 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
105 +
106 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
107 +
108 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
109 +
110 +
111 +(((
112 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
113 +)))
114 +
115 +(((
116 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
117 +)))
118 +
119 +[[image:image-20230613143052-5.png]]
120 +
121 +
122 +No polish needed if the container is shine metal surface without paint or non-metal container.
123 +
124 +[[image:image-20230613143125-6.png]]
125 +
126 +
127 +(((
128 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
129 +)))
130 +
131 +(((
132 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
133 +)))
134 +
135 +(((
136 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
137 +)))
138 +
139 +(((
140 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
141 +)))
142 +
143 +
144 +(((
145 +(% style="color:blue" %)**LED Status:**
146 +)))
147 +
148 +* (((
149 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
150 +)))
151 +
152 +* (((
153 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
154 +)))
155 +* (((
156 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
157 +)))
158 +
159 +(((
160 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
161 +)))
162 +
163 +
164 +(((
165 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
166 +)))
167 +
168 +
169 +(((
170 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
171 +)))
172 +
173 +(((
174 +Prepare Eproxy AB glue.
175 +)))
176 +
177 +(((
178 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
179 +)))
180 +
181 +(((
182 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
183 +)))
184 +
185 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
186 +
187 +
188 +(((
189 +(% style="color:red" %)**Note :**
190 +
191 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
192 +)))
193 +
194 +(((
195 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
196 +)))
197 +
198 +
199 +== 1.6 Applications ==
200 +
201 +
202 +* Smart liquid control solution.
203 +
204 +* Smart liquefied gas solution.
205 +
206 +== 1.7 Precautions ==
207 +
208 +
209 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
210 +
211 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
212 +
213 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
214 +
215 +== 1.8 Sleep mode and working mode ==
216 +
217 +
118 118  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 119  
120 120  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 121  
122 122  
123 -== 1.6 Button & LEDs ==
223 +== 1.9 Button & LEDs ==
124 124  
125 125  
126 126  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -139,10 +139,10 @@
139 139  )))
140 140  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 141  
142 -== 1.7 BLE connection ==
242 +== 1.10 BLE connection ==
143 143  
144 144  
145 -LDS12-LB support BLE remote configure.
245 +DDS20-LB support BLE remote configure.
146 146  
147 147  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 148  
... ... @@ -153,12 +153,12 @@
153 153  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 154  
155 155  
156 -== 1.8 Pin Definitions ==
256 +== 1.11 Pin Definitions ==
157 157  
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
258 +[[image:image-20230523174230-1.png]]
159 159  
160 160  
161 -== 1.9 Mechanical ==
261 +== 1.12 Mechanical ==
162 162  
163 163  
164 164  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -172,16 +172,18 @@
172 172  
173 173  (% style="color:blue" %)**Probe Mechanical:**
174 174  
275 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
175 175  
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 177  
278 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
178 178  
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 180  
281 += 2. Configure DDS20-LB to connect to LoRaWAN network =
282 +
181 181  == 2.1 How it works ==
182 182  
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
286 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 185  
186 186  (% style="display:none" %) (%%)
187 187  
... ... @@ -192,12 +192,12 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
297 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
196 196  
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
300 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
302 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
201 201  
202 202  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203 203  
... ... @@ -226,10 +226,10 @@
226 226  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227 227  
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
331 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
230 230  
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
334 +Press the button for 5 seconds to activate the DDS20-LB.
233 233  
234 234  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235 235  
... ... @@ -236,157 +236,63 @@
236 236  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237 237  
238 238  
239 -== 2.3 ​Uplink Payload ==
341 +== 2.3  ​Uplink Payload ==
240 240  
241 241  
242 -=== 2.3.1 Device Status, FPORT~=5 ===
243 -
244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
245 -
246 -The Payload format is as below.
247 -
248 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:529px" %)
249 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
250 -**Size(bytes)**
251 -)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
252 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
253 -
254 -Example parse in TTNv3
255 -
256 -**Sensor Model**: For LDS12-LB, this value is 0x24
257 -
258 -**Firmware Version**: 0x0100, Means: v1.0.0 version
259 -
260 -**Frequency Band**:
261 -
262 -0x01: EU868
263 -
264 -0x02: US915
265 -
266 -0x03: IN865
267 -
268 -0x04: AU915
269 -
270 -0x05: KZ865
271 -
272 -0x06: RU864
273 -
274 -0x07: AS923
275 -
276 -0x08: AS923-1
277 -
278 -0x09: AS923-2
279 -
280 -0x0a: AS923-3
281 -
282 -0x0b: CN470
283 -
284 -0x0c: EU433
285 -
286 -0x0d: KR920
287 -
288 -0x0e: MA869
289 -
290 -**Sub-Band**:
291 -
292 -AU915 and US915:value 0x00 ~~ 0x08
293 -
294 -CN470: value 0x0B ~~ 0x0C
295 -
296 -Other Bands: Always 0x00
297 -
298 -**Battery Info**:
299 -
300 -Check the battery voltage.
301 -
302 -Ex1: 0x0B45 = 2885mV
303 -
304 -Ex2: 0x0B49 = 2889mV
305 -
306 -
307 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
308 -
309 309  (((
310 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
345 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
311 311  )))
312 312  
313 313  (((
314 -Uplink payload includes in total 11 bytes.
349 +Uplink payload includes in total 8 bytes.
315 315  )))
316 316  
317 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
318 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
352 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
353 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
319 319  **Size(bytes)**
320 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
321 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
322 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
323 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)(((
324 -[[Interrupt flag>>]]
355 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
356 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
357 +[[Distance>>||anchor="H2.3.2A0Distance"]]
358 +(unit: mm)
359 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
360 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
361 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
325 325  
326 -[[&>>]]
363 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
327 327  
328 -[[Interrupt_level>>]]
329 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)(((
330 -[[Message Type>>||anchor="H2.3.7MessageType"]]
331 -)))
332 332  
333 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
366 +=== 2.3.1  Battery Info ===
334 334  
335 335  
336 -==== 2.3.2.a Battery Info ====
369 +Check the battery voltage for DDS20-LB.
337 337  
338 -
339 -Check the battery voltage for LDS12-LB.
340 -
341 341  Ex1: 0x0B45 = 2885mV
342 342  
343 343  Ex2: 0x0B49 = 2889mV
344 344  
345 345  
346 -==== 2.3.2.b DS18B20 Temperature sensor ====
376 +=== 2.3.2  Distance ===
347 347  
348 348  
349 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
379 +(((
380 +Get the distance. Flat object range 20mm - 2000mm.
381 +)))
350 350  
383 +(((
384 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
351 351  
352 -**Example**:
386 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
387 +)))
353 353  
354 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
389 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
355 355  
356 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
391 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
357 357  
393 +=== 2.3.3  Interrupt Pin ===
358 358  
359 -==== 2.3.2.c Distance ====
360 360  
361 -
362 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
363 -
364 -
365 -**Example**:
366 -
367 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
368 -
369 -
370 -==== 2.3.2.d Distance signal strength ====
371 -
372 -
373 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
374 -
375 -
376 -**Example**:
377 -
378 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
379 -
380 -Customers can judge whether they need to adjust the environment based on the signal strength.
381 -
382 -
383 -==== 2.3.2.e Interrupt Pin & Interrupt Level ====
384 -
385 -
386 386  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
387 387  
388 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
389 -
390 390  **Example:**
391 391  
392 392  0x00: Normal uplink packet.
... ... @@ -394,58 +394,53 @@
394 394  0x01: Interrupt Uplink Packet.
395 395  
396 396  
397 -==== 2.3.2.f LiDAR temp ====
405 +=== 2.3. DS18B20 Temperature sensor ===
398 398  
399 399  
400 -Characterize the internal temperature value of the sensor.
408 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
401 401  
402 -**Example: **
403 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
404 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
410 +**Example**:
405 405  
412 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
406 406  
407 -==== 2.3.2.g Message Type ====
414 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
408 408  
409 409  
417 +=== 2.3.5  Sensor Flag ===
418 +
419 +
410 410  (((
411 -For a normal uplink payload, the message type is always 0x01.
421 +0x01: Detect Ultrasonic Sensor
412 412  )))
413 413  
414 414  (((
415 -Valid Message Type:
425 +0x00: No Ultrasonic Sensor
416 416  )))
417 417  
418 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
419 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
420 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
421 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
422 422  
423 -=== 2.3.8 Decode payload in The Things Network ===
429 +=== 2.3.6  Decode payload in The Things Network ===
424 424  
425 425  
426 426  While using TTN network, you can add the payload format to decode the payload.
427 427  
428 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
434 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
429 429  
436 +The payload decoder function for TTN V3 is here:
430 430  
431 431  (((
432 -The payload decoder function for TTN is here:
439 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
433 433  )))
434 434  
435 -(((
436 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
437 -)))
438 438  
443 +== 2.4  Uplink Interval ==
439 439  
440 -== 2.4 Uplink Interval ==
441 441  
446 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
442 442  
443 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
444 444  
449 +== 2.5  ​Show Data in DataCake IoT Server ==
445 445  
446 -== 2.5 ​Show Data in DataCake IoT Server ==
447 447  
448 -
449 449  (((
450 450  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
451 451  )))
... ... @@ -468,7 +468,7 @@
468 468  
469 469  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
470 470  
471 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
474 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
472 472  
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
474 474  
... ... @@ -478,22 +478,23 @@
478 478  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
479 479  
480 480  
484 +
481 481  == 2.6 Datalog Feature ==
482 482  
483 483  
484 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
488 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
485 485  
486 486  
487 487  === 2.6.1 Ways to get datalog via LoRaWAN ===
488 488  
489 489  
490 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
494 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
491 491  
492 492  * (((
493 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
497 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
494 494  )))
495 495  * (((
496 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
500 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
497 497  )))
498 498  
499 499  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -504,7 +504,7 @@
504 504  === 2.6.2 Unix TimeStamp ===
505 505  
506 506  
507 -LDS12-LB uses Unix TimeStamp format based on
511 +DDS20-LB uses Unix TimeStamp format based on
508 508  
509 509  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
510 510  
... ... @@ -523,7 +523,7 @@
523 523  
524 524  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
525 525  
526 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
530 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
527 527  
528 528  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
529 529  
... ... @@ -551,7 +551,7 @@
551 551  )))
552 552  
553 553  (((
554 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
558 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
555 555  )))
556 556  
557 557  
... ... @@ -558,101 +558,17 @@
558 558  == 2.7 Frequency Plans ==
559 559  
560 560  
561 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
565 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
562 562  
563 563  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
564 564  
565 565  
566 -== 2.8 LiDAR ToF Measurement ==
570 += 3. Configure DDS20-LB =
567 567  
568 -=== 2.8.1 Principle of Distance Measurement ===
569 -
570 -
571 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
572 -
573 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
574 -
575 -
576 -=== 2.8.2 Distance Measurement Characteristics ===
577 -
578 -
579 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
580 -
581 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
582 -
583 -
584 -(((
585 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
586 -)))
587 -
588 -(((
589 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
590 -)))
591 -
592 -(((
593 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
594 -)))
595 -
596 -
597 -(((
598 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
599 -)))
600 -
601 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
602 -
603 -(((
604 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
605 -)))
606 -
607 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
608 -
609 -(((
610 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
611 -)))
612 -
613 -
614 -=== 2.8.3 Notice of usage ===
615 -
616 -
617 -Possible invalid /wrong reading for LiDAR ToF tech:
618 -
619 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
620 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
621 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
622 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
623 -
624 -=== 2.8.4  Reflectivity of different objects ===
625 -
626 -
627 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
628 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
629 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
630 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
631 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
632 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
633 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
634 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
635 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
636 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
637 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
638 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
639 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
640 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
641 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
642 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
643 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
644 -Unpolished white metal surface
645 -)))|(% style="width:93px" %)130%
646 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
647 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
648 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
649 -
650 -= 3. Configure LDS12-LB =
651 -
652 652  == 3.1 Configure Methods ==
653 653  
654 654  
655 -LDS12-LB supports below configure method:
575 +DDS20-LB supports below configure method:
656 656  
657 657  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
658 658  
... ... @@ -674,10 +674,10 @@
674 674  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
675 675  
676 676  
677 -== 3.3 Commands special design for LDS12-LB ==
597 +== 3.3 Commands special design for DDS20-LB ==
678 678  
679 679  
680 -These commands only valid for LDS12-LB, as below:
600 +These commands only valid for DDS20-LB, as below:
681 681  
682 682  
683 683  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -692,7 +692,7 @@
692 692  )))
693 693  
694 694  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
695 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
615 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
696 696  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
697 697  30000
698 698  OK
... ... @@ -720,9 +720,6 @@
720 720  )))
721 721  * (((
722 722  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
723 -
724 -
725 -
726 726  )))
727 727  
728 728  === 3.3.2 Set Interrupt Mode ===
... ... @@ -735,7 +735,7 @@
735 735  (% style="color:blue" %)**AT Command: AT+INTMOD**
736 736  
737 737  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
738 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
655 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
739 739  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
740 740  0
741 741  OK
... ... @@ -759,39 +759,10 @@
759 759  
760 760  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
761 761  
762 -
763 -=== 3.3.3  Set Power Output Duration ===
764 -
765 -Control the output duration 3V3 . Before each sampling, device will
766 -
767 -~1. first enable the power output to external sensor,
768 -
769 -2. keep it on as per duration, read sensor value and construct uplink payload
770 -
771 -3. final, close the power output.
772 -
773 -(% style="color:blue" %)**AT Command: AT+3V3T**
774 -
775 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
776 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
777 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
778 -OK
779 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
780 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
781 -
782 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
783 -Format: Command Code (0x07) followed by 3 bytes.
784 -
785 -The first byte is 01,the second and third bytes are the time to turn on.
786 -
787 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
788 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
789 -
790 -
791 791  = 4. Battery & Power Consumption =
792 792  
793 793  
794 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
682 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
795 795  
796 796  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
797 797  
... ... @@ -800,7 +800,7 @@
800 800  
801 801  
802 802  (% class="wikigeneratedid" %)
803 -User can change firmware LDS12-LB to:
691 +User can change firmware DDS20-LB to:
804 804  
805 805  * Change Frequency band/ region.
806 806  
... ... @@ -808,7 +808,7 @@
808 808  
809 809  * Fix bugs.
810 810  
811 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
699 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
812 812  
813 813  Methods to Update Firmware:
814 814  
... ... @@ -818,38 +818,39 @@
818 818  
819 819  = 6. FAQ =
820 820  
821 -== 6.1 What is the frequency plan for LDS12-LB? ==
709 +== 6.1  What is the frequency plan for DDS20-LB? ==
822 822  
823 823  
824 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
712 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
825 825  
826 826  
827 -= 7Trouble Shooting =
715 +== 6.2  Can I use DDS20-LB in condensation environment? ==
828 828  
829 -== 7.1 AT Command input doesn't work ==
830 830  
718 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
831 831  
832 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
833 833  
721 += 7.  Trouble Shooting =
834 834  
835 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
723 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
836 836  
837 837  
838 -(((
839 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
840 -)))
726 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
841 841  
842 -(((
843 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
844 -)))
845 845  
729 +== 7.2  AT Command input doesn't work ==
846 846  
847 -(((
848 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
849 -)))
850 850  
732 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
733 +
734 +
735 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
736 +
737 +
851 851  (((
852 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
739 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
740 +
741 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
853 853  )))
854 854  
855 855  
... ... @@ -856,7 +856,7 @@
856 856  = 8. Order Info =
857 857  
858 858  
859 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
748 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
860 860  
861 861  (% style="color:red" %)**XXX**(%%): **The default frequency band**
862 862  
... ... @@ -881,7 +881,7 @@
881 881  
882 882  (% style="color:#037691" %)**Package Includes**:
883 883  
884 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
773 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
885 885  
886 886  (% style="color:#037691" %)**Dimension and weight**:
887 887  
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content