Last modified by Mengting Qiu on 2023/12/14 11:15

From version 85.1
edited by Saxer Lin
on 2023/07/15 11:46
Change comment: There is no comment for this version
To version 81.1
edited by Xiaoling
on 2023/06/14 16:23
Change comment: Uploaded new attachment "image-20230614162334-2.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,14 +44,16 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
56 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  
... ... @@ -63,23 +63,6 @@
63 63  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 64  * Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
67 -
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 -* Distance resolution : 5mm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
82 -
83 83  (% style="color:#037691" %)**LoRa Spec:**
84 84  
85 85  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -101,29 +101,145 @@
101 101  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 102  
103 103  
104 -== 1.4 Applications ==
89 +== 1.4 Suitable Container & Liquid ==
105 105  
106 106  
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
114 114  
115 115  
116 116  (% style="display:none" %)
117 117  
118 -== 1.5 Sleep mode and working mode ==
102 +== 1.5 Install LDS12-LB ==
119 119  
120 120  
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
106 +
107 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 +
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
110 +
111 +
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
115 +
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 +)))
119 +
120 +[[image:image-20230613143052-5.png]]
121 +
122 +
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
124 +
125 +[[image:image-20230613143125-6.png]]
126 +
127 +
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
131 +
132 +(((
133 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
135 +
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
138 +)))
139 +
140 +(((
141 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
143 +
144 +
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
148 +
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
152 +
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
159 +
160 +(((
161 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
163 +
164 +
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
168 +
169 +
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
173 +
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
177 +
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
181 +
182 +(((
183 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
184 +)))
185 +
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
187 +
188 +
189 +(((
190 +(% style="color:red" %)**Note :**
191 +
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
194 +
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
198 +
199 +
200 +== 1.6 Applications ==
201 +
202 +
203 +* Smart liquid control solution
204 +
205 +* Smart liquefied gas solution
206 +
207 +
208 +== 1.7 Precautions ==
209 +
210 +
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
212 +
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
214 +
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
216 +
217 +(% style="display:none" %)
218 +
219 +== 1.8 Sleep mode and working mode ==
220 +
221 +
121 121  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
122 122  
123 123  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124 124  
125 125  
126 -== 1.6 Button & LEDs ==
227 +== 1.9 Button & LEDs ==
127 127  
128 128  
129 129  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -143,7 +143,7 @@
143 143  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144 144  
145 145  
146 -== 1.7 BLE connection ==
247 +== 1.10 BLE connection ==
147 147  
148 148  
149 149  LDS12-LB support BLE remote configure.
... ... @@ -157,12 +157,12 @@
157 157  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158 158  
159 159  
160 -== 1.8 Pin Definitions ==
261 +== 1.11 Pin Definitions ==
161 161  
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
263 +[[image:image-20230523174230-1.png]]
163 163  
164 164  
165 -== 1.9 Mechanical ==
266 +== 1.12 Mechanical ==
166 166  
167 167  
168 168  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -176,10 +176,12 @@
176 176  
177 177  (% style="color:blue" %)**Probe Mechanical:**
178 178  
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
179 179  
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181 181  
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
182 182  
285 +
183 183  = 2. Configure LDS12-LB to connect to LoRaWAN network =
184 184  
185 185  == 2.1 How it works ==
... ... @@ -196,7 +196,7 @@
196 196  
197 197  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198 198  
199 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
200 200  
201 201  
202 202  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -240,106 +240,34 @@
240 240  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241 241  
242 242  
243 -== 2.3 ​Uplink Payload ==
346 +== 2.3  ​Uplink Payload ==
244 244  
245 245  
246 -=== 2.3.1 Device Status, FPORT~=5 ===
247 -
248 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
249 -
250 -The Payload format is as below.
251 -
252 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:529px" %)
253 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
254 -**Size(bytes)**
255 -)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
256 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
257 -
258 -Example parse in TTNv3
259 -
260 -**Sensor Model**: For LDS12-LB, this value is 0x24
261 -
262 -**Firmware Version**: 0x0100, Means: v1.0.0 version
263 -
264 -**Frequency Band**:
265 -
266 -0x01: EU868
267 -
268 -0x02: US915
269 -
270 -0x03: IN865
271 -
272 -0x04: AU915
273 -
274 -0x05: KZ865
275 -
276 -0x06: RU864
277 -
278 -0x07: AS923
279 -
280 -0x08: AS923-1
281 -
282 -0x09: AS923-2
283 -
284 -0x0a: AS923-3
285 -
286 -0x0b: CN470
287 -
288 -0x0c: EU433
289 -
290 -0x0d: KR920
291 -
292 -0x0e: MA869
293 -
294 -**Sub-Band**:
295 -
296 -AU915 and US915:value 0x00 ~~ 0x08
297 -
298 -CN470: value 0x0B ~~ 0x0C
299 -
300 -Other Bands: Always 0x00
301 -
302 -**Battery Info**:
303 -
304 -Check the battery voltage.
305 -
306 -Ex1: 0x0B45 = 2885mV
307 -
308 -Ex2: 0x0B49 = 2889mV
309 -
310 -
311 -=== 2.3.2 Device Status, FPORT~=5 ===
312 -
313 313  (((
314 314  LDS12-LB will uplink payload via LoRaWAN with below payload format: 
315 315  )))
316 316  
317 317  (((
318 -Uplink payload includes in total 11 bytes.
354 +Uplink payload includes in total 8 bytes.
319 319  )))
320 320  
321 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
322 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
323 323  **Size(bytes)**
324 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
325 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
326 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
327 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)(((
328 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
329 329  
330 -&
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
331 331  
332 -[[Interrupt_level>>||anchor="H2.3.5InterruptPin"]]
333 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)(((
334 -[[Message Type>>||anchor="H2.3.7MessageType"]]
335 -)))
336 336  
337 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
371 +=== 2.3.1  Battery Info ===
338 338  
339 339  
340 -=== 2.3.2.a Battery Info ===
341 -
342 -
343 343  Check the battery voltage for LDS12-LB.
344 344  
345 345  Ex1: 0x0B45 = 2885mV
... ... @@ -347,50 +347,29 @@
347 347  Ex2: 0x0B49 = 2889mV
348 348  
349 349  
350 -=== 2.3.2.b DS18B20 Temperature sensor ===
381 +=== 2.3.2  Distance ===
351 351  
352 352  
353 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
384 +(((
385 +Get the distance. Flat object range 20mm - 2000mm.
386 +)))
354 354  
388 +(((
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
355 355  
356 -**Example**:
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
392 +)))
357 357  
358 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
359 359  
360 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
361 361  
362 362  
363 -=== 2.3.2.c Distance ===
399 +=== 2.3. Interrupt Pin ===
364 364  
365 365  
366 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
367 -
368 -
369 -**Example**:
370 -
371 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
372 -
373 -
374 -=== 2.3.2.d Distance signal strength ===
375 -
376 -
377 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
378 -
379 -
380 -**Example**:
381 -
382 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
383 -
384 -Customers can judge whether they need to adjust the environment based on the signal strength.
385 -
386 -
387 -=== 2.3.2.e Interrupt Pin & Interrupt Level ===
388 -
389 -
390 390  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
391 391  
392 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
393 -
394 394  **Example:**
395 395  
396 396  0x00: Normal uplink packet.
... ... @@ -398,57 +398,51 @@
398 398  0x01: Interrupt Uplink Packet.
399 399  
400 400  
401 -=== 2.3.2.f LiDAR temp ===
411 +=== 2.3. DS18B20 Temperature sensor ===
402 402  
403 403  
404 -Characterize the internal temperature value of the sensor.
414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
405 405  
406 -**Example: **
407 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
408 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
416 +**Example**:
409 409  
418 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
410 410  
411 -=== 2.3.2.g Message Type ===
420 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
412 412  
413 413  
423 +=== 2.3.5  Sensor Flag ===
424 +
425 +
414 414  (((
415 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
416 416  )))
417 417  
418 418  (((
419 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
420 420  )))
421 421  
422 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
423 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
424 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
425 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
426 426  
435 +=== 2.3.6  Decode payload in The Things Network ===
427 427  
428 -=== 2.3.8 Decode payload in The Things Network ===
429 429  
430 -
431 431  While using TTN network, you can add the payload format to decode the payload.
432 432  
433 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
434 434  
442 +The payload decoder function for TTN V3 is here:
435 435  
436 436  (((
437 -The payload decoder function for TTN is here:
445 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
438 438  )))
439 439  
440 -(((
441 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
442 -)))
443 443  
449 +== 2.4  Uplink Interval ==
444 444  
445 -== 2.4 Uplink Interval ==
446 446  
447 -
448 448  The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
449 449  
450 450  
451 -== 2.5 ​Show Data in DataCake IoT Server ==
455 +== 2.5  ​Show Data in DataCake IoT Server ==
452 452  
453 453  
454 454  (((
... ... @@ -568,92 +568,6 @@
568 568  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
569 569  
570 570  
571 -== 2.8 LiDAR ToF Measurement ==
572 -
573 -=== 2.8.1 Principle of Distance Measurement ===
574 -
575 -
576 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
577 -
578 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
579 -
580 -
581 -=== 2.8.2 Distance Measurement Characteristics ===
582 -
583 -
584 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
585 -
586 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
587 -
588 -
589 -(((
590 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
591 -)))
592 -
593 -(((
594 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
595 -)))
596 -
597 -(((
598 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
599 -)))
600 -
601 -
602 -(((
603 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
604 -)))
605 -
606 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
607 -
608 -(((
609 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
610 -)))
611 -
612 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
613 -
614 -(((
615 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
616 -)))
617 -
618 -
619 -=== 2.8.3 Notice of usage ===
620 -
621 -
622 -Possible invalid /wrong reading for LiDAR ToF tech:
623 -
624 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
625 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
626 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
627 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
628 -
629 -
630 -=== 2.8.4  Reflectivity of different objects ===
631 -
632 -
633 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
634 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
635 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
636 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
637 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
638 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
639 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
640 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
641 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
642 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
643 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
644 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
645 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
646 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
647 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
648 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
649 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
650 -Unpolished white metal surface
651 -)))|(% style="width:93px" %)130%
652 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
653 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
654 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
655 -
656 -
657 657  = 3. Configure LDS12-LB =
658 658  
659 659  == 3.1 Configure Methods ==
... ... @@ -700,7 +700,7 @@
700 700  )))
701 701  
702 702  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
703 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
704 704  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
705 705  30000
706 706  OK
... ... @@ -743,7 +743,7 @@
743 743  (% style="color:blue" %)**AT Command: AT+INTMOD**
744 744  
745 745  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
746 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
747 747  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
748 748  0
749 749  OK
... ... @@ -768,83 +768,6 @@
768 768  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
769 769  
770 770  
771 -=== 3.3.3 Get Firmware Version Info ===
772 -
773 -
774 -Feature: use downlink to get firmware version.
775 -
776 -(% style="color:blue" %)**Downlink Command: 0x26**
777 -
778 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
779 -|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
780 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
781 -
782 -* Reply to the confirmation package: 26 01
783 -* Reply to non-confirmed packet: 26 00
784 -
785 -Device will send an uplink after got this downlink command. With below payload:
786 -
787 -Configures info payload:
788 -
789 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
790 -|=(% style="background-color:#4F81BD;color:white" %)(((
791 -**Size(bytes)**
792 -)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
793 -|**Value**|Software Type|(((
794 -Frequency Band
795 -)))|Sub-band|(((
796 -Firmware Version
797 -)))|Sensor Type|Reserve|(((
798 -[[Message Type>>||anchor="H2.3.7MessageType"]]
799 -Always 0x02
800 -)))
801 -
802 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
803 -
804 -(% style="color:#037691" %)**Frequency Band**:
805 -
806 -0x01: EU868
807 -
808 -0x02: US915
809 -
810 -0x03: IN865
811 -
812 -0x04: AU915
813 -
814 -0x05: KZ865
815 -
816 -0x06: RU864
817 -
818 -0x07: AS923
819 -
820 -0x08: AS923-1
821 -
822 -0x09: AS923-2
823 -
824 -0xa0: AS923-3
825 -
826 -
827 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
828 -
829 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
830 -
831 -(% style="color:#037691" %)**Sensor Type**:
832 -
833 -0x01: LSE01
834 -
835 -0x02: LDDS75
836 -
837 -0x03: LDDS20
838 -
839 -0x04: LLMS01
840 -
841 -0x05: LSPH01
842 -
843 -0x06: LSNPK01
844 -
845 -0x07: LLDS12
846 -
847 -
848 848  = 4. Battery & Power Consumption =
849 849  
850 850  
... ... @@ -865,7 +865,7 @@
865 865  
866 866  * Fix bugs.
867 867  
868 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
869 869  
870 870  Methods to Update Firmware:
871 871  
... ... @@ -894,11 +894,11 @@
894 894  
895 895  
896 896  (((
897 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
738 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
898 898  )))
899 899  
900 900  (((
901 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
742 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
902 902  )))
903 903  
904 904  
... ... @@ -907,7 +907,7 @@
907 907  )))
908 908  
909 909  (((
910 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
751 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
911 911  )))
912 912  
913 913  
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content