Last modified by Mengting Qiu on 2023/12/14 11:15

From version 85.1
edited by Saxer Lin
on 2023/07/15 11:46
Change comment: There is no comment for this version
To version 113.5
edited by Xiaoling
on 2023/11/10 09:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,170 +18,55 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 -
58 58  == 1.3 Specification ==
59 59  
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
62 62  
63 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
67 67  
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 -* Distance resolution : 5mm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
82 -
83 -(% style="color:#037691" %)**LoRa Spec:**
84 -
85 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 -* Max +22 dBm constant RF output vs.
87 -* RX sensitivity: down to -139 dBm.
88 -* Excellent blocking immunity
89 -
90 -(% style="color:#037691" %)**Battery:**
91 -
92 -* Li/SOCI2 un-chargeable battery
93 -* Capacity: 8500mAh
94 -* Self-Discharge: <1% / Year @ 25°C
95 -* Max continuously current: 130mA
96 -* Max boost current: 2A, 1 second
97 -
98 -(% style="color:#037691" %)**Power Consumption**
99 -
100 -* Sleep Mode: 5uA @ 3.3v
101 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 -
103 -
104 -== 1.4 Applications ==
105 -
106 -
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
114 -
115 -
116 116  (% style="display:none" %)
117 117  
118 -== 1.5 Sleep mode and working mode ==
119 119  
69 += 2. Configure DS20L to connect to LoRaWAN network =
120 120  
121 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
122 -
123 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124 -
125 -
126 -== 1.6 Button & LEDs ==
127 -
128 -
129 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
130 -
131 -
132 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
134 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
137 -)))
138 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 -)))
143 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144 -
145 -
146 -== 1.7 BLE connection ==
147 -
148 -
149 -LDS12-LB support BLE remote configure.
150 -
151 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152 -
153 -* Press button to send an uplink
154 -* Press button to active device.
155 -* Device Power on or reset.
156 -
157 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158 -
159 -
160 -== 1.8 Pin Definitions ==
161 -
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
163 -
164 -
165 -== 1.9 Mechanical ==
166 -
167 -
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
169 -
170 -
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
172 -
173 -
174 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
175 -
176 -
177 -(% style="color:blue" %)**Probe Mechanical:**
178 -
179 -
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181 -
182 -
183 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
184 -
185 185  == 2.1 How it works ==
186 186  
187 187  
... ... @@ -196,7 +196,7 @@
196 196  
197 197  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198 198  
199 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
200 200  
201 201  
202 202  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -242,27 +242,29 @@
242 242  
243 243  == 2.3 ​Uplink Payload ==
244 244  
245 -
246 246  === 2.3.1 Device Status, FPORT~=5 ===
247 247  
133 +
248 248  Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
249 249  
250 250  The Payload format is as below.
251 251  
252 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:529px" %)
253 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
138 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
139 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 254  **Size(bytes)**
255 -)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2**
141 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
256 256  |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
257 257  
258 258  Example parse in TTNv3
259 259  
260 -**Sensor Model**: For LDS12-LB, this value is 0x24
146 +[[image:image-20230805103904-1.png||height="131" width="711"]]
261 261  
262 -**Firmware Version**: 0x0100, Means: v1.0.0 version
148 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
263 263  
264 -**Frequency Band**:
150 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
265 265  
152 +(% style="color:blue" %)**Frequency Band**:
153 +
266 266  0x01: EU868
267 267  
268 268  0x02: US915
... ... @@ -291,7 +291,7 @@
291 291  
292 292  0x0e: MA869
293 293  
294 -**Sub-Band**:
182 +(% style="color:blue" %)**Sub-Band**:
295 295  
296 296  AU915 and US915:value 0x00 ~~ 0x08
297 297  
... ... @@ -299,7 +299,7 @@
299 299  
300 300  Other Bands: Always 0x00
301 301  
302 -**Battery Info**:
190 +(% style="color:blue" %)**Battery Info**:
303 303  
304 304  Check the battery voltage.
305 305  
... ... @@ -308,36 +308,33 @@
308 308  Ex2: 0x0B49 = 2889mV
309 309  
310 310  
311 -=== 2.3.2 Device Status, FPORT~=5 ===
199 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
312 312  
313 -(((
314 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
315 -)))
316 316  
317 317  (((
318 -Uplink payload includes in total 11 bytes.
319 -)))
203 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
320 320  
321 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %)
322 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
323 -**Size(bytes)**
324 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1**
325 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
326 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
327 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)(((
328 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
205 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
329 329  
330 -&
207 +Uplink Payload totals 11 bytes.
208 +)))
331 331  
332 -[[Interrupt_level>>||anchor="H2.3.5InterruptPin"]]
333 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)(((
334 -[[Message Type>>||anchor="H2.3.7MessageType"]]
210 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
211 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
212 +**Size(bytes)**
213 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
214 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
215 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
216 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
217 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
218 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
219 +[[Message Type>>||anchor="HMessageType"]]
335 335  )))
336 336  
337 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
222 +[[image:image-20230805104104-2.png||height="136" width="754"]]
338 338  
339 339  
340 -=== 2.3.2.a Battery Info ===
225 +==== (% style="color:blue" %)**Battery Info**(%%) ====
341 341  
342 342  
343 343  Check the battery voltage for LDS12-LB.
... ... @@ -347,7 +347,7 @@
347 347  Ex2: 0x0B49 = 2889mV
348 348  
349 349  
350 -=== 2.3.2.b DS18B20 Temperature sensor ===
235 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
351 351  
352 352  
353 353  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -360,7 +360,7 @@
360 360  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
361 361  
362 362  
363 -=== 2.3.2.c Distance ===
248 +==== (% style="color:blue" %)**Distance**(%%) ====
364 364  
365 365  
366 366  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -371,7 +371,7 @@
371 371  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
372 372  
373 373  
374 -=== 2.3.2.d Distance signal strength ===
259 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
375 375  
376 376  
377 377  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -384,21 +384,36 @@
384 384  Customers can judge whether they need to adjust the environment based on the signal strength.
385 385  
386 386  
387 -=== 2.3.2.e Interrupt Pin & Interrupt Level ===
272 +**1) When the sensor detects valid data:**
388 388  
274 +[[image:image-20230805155335-1.png||height="145" width="724"]]
389 389  
276 +
277 +**2) When the sensor detects invalid data:**
278 +
279 +[[image:image-20230805155428-2.png||height="139" width="726"]]
280 +
281 +
282 +**3) When the sensor is not connected:**
283 +
284 +[[image:image-20230805155515-3.png||height="143" width="725"]]
285 +
286 +
287 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
288 +
289 +
390 390  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
391 391  
392 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
292 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
393 393  
394 394  **Example:**
395 395  
396 -0x00: Normal uplink packet.
296 +If byte[0]&0x01=0x00 : Normal uplink packet.
397 397  
398 -0x01: Interrupt Uplink Packet.
298 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
399 399  
400 400  
401 -=== 2.3.2.f LiDAR temp ===
301 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
402 402  
403 403  
404 404  Characterize the internal temperature value of the sensor.
... ... @@ -408,7 +408,7 @@
408 408  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
409 409  
410 410  
411 -=== 2.3.2.g Message Type ===
311 +==== (% style="color:blue" %)**Message Type**(%%) ====
412 412  
413 413  
414 414  (((
... ... @@ -421,13 +421,97 @@
421 421  
422 422  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
423 423  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
424 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
425 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
324 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
325 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
426 426  
327 +[[image:image-20230805150315-4.png||height="233" width="723"]]
427 427  
428 -=== 2.3.8 Decode payload in The Things Network ===
429 429  
330 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
430 430  
332 +
333 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
334 +
335 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
336 +
337 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
338 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
339 +**Size(bytes)**
340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
341 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
342 +Reserve(0xFF)
343 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
344 +LiDAR temp
345 +)))|(% style="width:85px" %)Unix TimeStamp
346 +
347 +**Interrupt flag & Interrupt level:**
348 +
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
350 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
351 +**Size(bit)**
352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
353 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
354 +Interrupt flag
355 +)))
356 +
357 +* (((
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
359 +)))
360 +
361 +For example, in the US915 band, the max payload for different DR is:
362 +
363 +**a) DR0:** max is 11 bytes so one entry of data
364 +
365 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
366 +
367 +**c) DR2:** total payload includes 11 entries of data
368 +
369 +**d) DR3:** total payload includes 22 entries of data.
370 +
371 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
372 +
373 +
374 +**Downlink:**
375 +
376 +0x31 64 CC 68 0C 64 CC 69 74 05
377 +
378 +[[image:image-20230805144936-2.png||height="113" width="746"]]
379 +
380 +**Uplink:**
381 +
382 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
383 +
384 +
385 +**Parsed Value:**
386 +
387 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
388 +
389 +
390 +[360,176,30,High,True,2023-08-04 02:53:00],
391 +
392 +[355,168,30,Low,False,2023-08-04 02:53:29],
393 +
394 +[245,211,30,Low,False,2023-08-04 02:54:29],
395 +
396 +[57,700,30,Low,False,2023-08-04 02:55:29],
397 +
398 +[361,164,30,Low,True,2023-08-04 02:56:00],
399 +
400 +[337,184,30,Low,False,2023-08-04 02:56:40],
401 +
402 +[20,4458,30,Low,False,2023-08-04 02:57:40],
403 +
404 +[362,173,30,Low,False,2023-08-04 02:58:53],
405 +
406 +
407 +**History read from serial port:**
408 +
409 +[[image:image-20230805145056-3.png]]
410 +
411 +
412 +=== 2.3.4 Decode payload in The Things Network ===
413 +
414 +
431 431  While using TTN network, you can add the payload format to decode the payload.
432 432  
433 433  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -442,15 +442,9 @@
442 442  )))
443 443  
444 444  
445 -== 2.4 Uplink Interval ==
429 +== 2.4 ​Show Data in DataCake IoT Server ==
446 446  
447 447  
448 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
449 -
450 -
451 -== 2.5 ​Show Data in DataCake IoT Server ==
452 -
453 -
454 454  (((
455 455  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
456 456  )))
... ... @@ -483,13 +483,13 @@
483 483  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
484 484  
485 485  
486 -== 2.6 Datalog Feature ==
464 +== 2.5 Datalog Feature ==
487 487  
488 488  
489 489  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
490 490  
491 491  
492 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
470 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
493 493  
494 494  
495 495  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -501,14 +501,11 @@
501 501  b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
502 502  )))
503 503  
504 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
505 505  
506 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
507 507  
484 +=== 2.5.2 Unix TimeStamp ===
508 508  
509 -=== 2.6.2 Unix TimeStamp ===
510 510  
511 -
512 512  LDS12-LB uses Unix TimeStamp format based on
513 513  
514 514  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
... ... @@ -523,7 +523,7 @@
523 523  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
524 524  
525 525  
526 -=== 2.6.3 Set Device Time ===
501 +=== 2.5.3 Set Device Time ===
527 527  
528 528  
529 529  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -533,13 +533,13 @@
533 533  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
534 534  
535 535  
536 -=== 2.6.4 Poll sensor value ===
511 +=== 2.5.4 Poll sensor value ===
537 537  
538 538  
539 539  Users can poll sensor values based on timestamps. Below is the downlink command.
540 540  
541 541  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
542 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
517 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
543 543  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
544 544  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
545 545  
... ... @@ -560,7 +560,7 @@
560 560  )))
561 561  
562 562  
563 -== 2.7 Frequency Plans ==
538 +== 2.6 Frequency Plans ==
564 564  
565 565  
566 566  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -568,94 +568,8 @@
568 568  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
569 569  
570 570  
571 -== 2.8 LiDAR ToF Measurement ==
546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
572 572  
573 -=== 2.8.1 Principle of Distance Measurement ===
574 -
575 -
576 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
577 -
578 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
579 -
580 -
581 -=== 2.8.2 Distance Measurement Characteristics ===
582 -
583 -
584 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
585 -
586 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
587 -
588 -
589 -(((
590 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
591 -)))
592 -
593 -(((
594 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
595 -)))
596 -
597 -(((
598 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
599 -)))
600 -
601 -
602 -(((
603 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
604 -)))
605 -
606 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
607 -
608 -(((
609 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
610 -)))
611 -
612 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
613 -
614 -(((
615 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
616 -)))
617 -
618 -
619 -=== 2.8.3 Notice of usage ===
620 -
621 -
622 -Possible invalid /wrong reading for LiDAR ToF tech:
623 -
624 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
625 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
626 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
627 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
628 -
629 -
630 -=== 2.8.4  Reflectivity of different objects ===
631 -
632 -
633 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
634 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
635 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
636 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
637 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
638 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
639 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
640 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
641 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
642 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
643 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
644 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
645 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
646 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
647 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
648 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
649 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
650 -Unpolished white metal surface
651 -)))|(% style="width:93px" %)130%
652 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
653 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
654 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
655 -
656 -
657 -= 3. Configure LDS12-LB =
658 -
659 659  == 3.1 Configure Methods ==
660 660  
661 661  
... ... @@ -667,7 +667,6 @@
667 667  
668 668  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
669 669  
670 -
671 671  == 3.2 General Commands ==
672 672  
673 673  
... ... @@ -736,9 +736,9 @@
736 736  === 3.3.2 Set Interrupt Mode ===
737 737  
738 738  
739 -Feature, Set Interrupt mode for PA8 of pin.
627 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
740 740  
741 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
629 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
742 742  
743 743  (% style="color:blue" %)**AT Command: AT+INTMOD**
744 744  
... ... @@ -749,7 +749,11 @@
749 749  OK
750 750  the mode is 0 =Disable Interrupt
751 751  )))
752 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
640 +|(% style="width:154px" %)(((
641 +AT+INTMOD=2
642 +
643 +(default)
644 +)))|(% style="width:196px" %)(((
753 753  Set Transmit Interval
754 754  0. (Disable Interrupt),
755 755  ~1. (Trigger by rising and falling edge)
... ... @@ -768,83 +768,6 @@
768 768  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
769 769  
770 770  
771 -=== 3.3.3 Get Firmware Version Info ===
772 -
773 -
774 -Feature: use downlink to get firmware version.
775 -
776 -(% style="color:blue" %)**Downlink Command: 0x26**
777 -
778 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
779 -|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
780 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
781 -
782 -* Reply to the confirmation package: 26 01
783 -* Reply to non-confirmed packet: 26 00
784 -
785 -Device will send an uplink after got this downlink command. With below payload:
786 -
787 -Configures info payload:
788 -
789 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
790 -|=(% style="background-color:#4F81BD;color:white" %)(((
791 -**Size(bytes)**
792 -)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
793 -|**Value**|Software Type|(((
794 -Frequency Band
795 -)))|Sub-band|(((
796 -Firmware Version
797 -)))|Sensor Type|Reserve|(((
798 -[[Message Type>>||anchor="H2.3.7MessageType"]]
799 -Always 0x02
800 -)))
801 -
802 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
803 -
804 -(% style="color:#037691" %)**Frequency Band**:
805 -
806 -0x01: EU868
807 -
808 -0x02: US915
809 -
810 -0x03: IN865
811 -
812 -0x04: AU915
813 -
814 -0x05: KZ865
815 -
816 -0x06: RU864
817 -
818 -0x07: AS923
819 -
820 -0x08: AS923-1
821 -
822 -0x09: AS923-2
823 -
824 -0xa0: AS923-3
825 -
826 -
827 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
828 -
829 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
830 -
831 -(% style="color:#037691" %)**Sensor Type**:
832 -
833 -0x01: LSE01
834 -
835 -0x02: LDDS75
836 -
837 -0x03: LDDS20
838 -
839 -0x04: LLMS01
840 -
841 -0x05: LSPH01
842 -
843 -0x06: LSNPK01
844 -
845 -0x07: LLDS12
846 -
847 -
848 848  = 4. Battery & Power Consumption =
849 849  
850 850  
... ... @@ -873,7 +873,6 @@
873 873  
874 874  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
875 875  
876 -
877 877  = 6. FAQ =
878 878  
879 879  == 6.1 What is the frequency plan for LDS12-LB? ==
... ... @@ -914,7 +914,7 @@
914 914  = 8. Order Info =
915 915  
916 916  
917 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
918 918  
919 919  (% style="color:red" %)**XXX**(%%): **The default frequency band**
920 920  
... ... @@ -934,13 +934,12 @@
934 934  
935 935  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
936 936  
937 -
938 938  = 9. ​Packing Info =
939 939  
940 940  
941 941  (% style="color:#037691" %)**Package Includes**:
942 942  
943 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
944 944  
945 945  (% style="color:#037691" %)**Dimension and weight**:
946 946  
... ... @@ -952,7 +952,6 @@
952 952  
953 953  * Weight / pcs : g
954 954  
955 -
956 956  = 10. Support =
957 957  
958 958  
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content