Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 13 added, 0 removed)
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LDS12-LB-- LoRaWANLiDARToFDistanceSensor User Manual1 +DS20L -- LoRaWAN Smart Distance Detector User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023 0614153353-1.png]]2 +[[image:image-20231110085342-2.png||height="481" width="481"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,259 +18,210 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDARToFDistanceSensor ==22 +== 1.1 What is LoRaWAN Smart Distance Detector == 22 22 23 23 24 -The Dragino LDS12-LB is a(% style="color:blue" %)**LoRaWANLiDARToF(Time of Flight)DistanceSensor**(%%)forInternetofThings solution. Itis capabletomeasure the distance toan objectas closeas 10centimeters(+/- 5cm up to 6m) andas far as 12 meters(+/-1%startingat6m)!.TheLiDAR probeuseslaser induction technologyfordistancemeasurement.25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. 25 25 26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 27 28 - Itdetects thedistance betweenthemeasuredobject andthe sensor,anduploadsthevalue viawirelesstoLoRaWANIoTServer.30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.** 29 29 30 - TheLoRawirelesstechnologyused in LDS12-LB allowsdevice tosend data and reachextremelyngrangesatlowdata-rates.Itprovides ultra-long range spread spectrum communicationandhigh interferenceimmunity whilstminimizing currentconsumption.32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 31 31 32 - LDS12-LB(% style="color:blue" %)**supports BLE configure**(%%)and (%style="color:blue"%)**wirelessOTAupdate**(%%) whichmakeuser easyto use.34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 33 33 34 - LDS12-LBis powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%),it isdesigned for longterm use up to 5 years.36 +[[image:image-20231110091506-4.png||height="391" width="768"]] 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-20230615152941-1.png||height="459" width="800"]] 39 - 40 - 41 41 == 1.2 Features == 42 42 43 43 44 -* LoRaWAN 1.0.3 Class A 45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 -* Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 51 -* Support Bluetooth v5.1 and LoRaWAN remote configure 52 -* Support wireless OTA update firmware 42 +* LoRaWAN Class A protocol 43 +* LiDAR distance detector, range 3 ~~ 200cm 44 +* Periodically detect or continuously detect mode 53 53 * AT Commands to change parameters 54 -* Downlink to change configure 55 -* 8500mAh Battery for long term use 46 +* Remotely configure parameters via LoRaWAN Downlink 47 +* Alarm & Counting mode 48 +* Datalog Feature 49 +* Firmware upgradable via program port or LoRa protocol 50 +* Built-in 2400mAh battery or power by external power source 56 56 57 - 58 - 59 59 == 1.3 Specification == 60 60 61 61 62 -(% style="color:#037691" %)** CommonDCCharacteristics:**55 +(% style="color:#037691" %)**LiDAR Sensor:** 63 63 64 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 65 -* Operating Temperature: -40 ~~ 85°C 57 +* Operation Temperature: -40 ~~ 80 °C 58 +* Operation Humidity: 0~~99.9%RH (no Dew) 59 +* Storage Temperature: -10 ~~ 45°C 60 +* Measure Range: 3cm~~200cm @ 90% reflectivity 61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 +* ToF FoV: ±9°, Total 18° 63 +* Light source: VCSEL 66 66 67 -(% style="color:#037691" %)**Probe Specification:** 68 68 69 -* Storage temperature:-20℃~~75℃ 70 -* Operating temperature : -20℃~~60℃ 71 -* Measure Distance: 72 -** 0.1m ~~ 12m @ 90% Reflectivity 73 -** 0.1m ~~ 4m @ 10% Reflectivity 74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution : 5mm 76 -* Ambient light immunity : 70klux 77 -* Enclosure rating : IP65 78 -* Light source : LED 79 -* Central wavelength : 850nm 80 -* FOV : 3.6° 81 -* Material of enclosure : ABS+PC 82 -* Wire length : 25cm 66 +(% style="display:none" %) 83 83 84 -(% style="color:#037691" %)**LoRa Spec:** 85 85 86 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 87 -* Max +22 dBm constant RF output vs. 88 -* RX sensitivity: down to -139 dBm. 89 -* Excellent blocking immunity 69 += 2. Configure DS20L to connect to LoRaWAN network = 90 90 91 - (% style="color:#037691"%)**Battery:**71 +== 2.1 How it works == 92 92 93 -* Li/SOCI2 un-chargeable battery 94 -* Capacity: 8500mAh 95 -* Self-Discharge: <1% / Year @ 25°C 96 -* Max continuously current: 130mA 97 -* Max boost current: 2A, 1 second 98 98 99 -(% style="color:#037691" %)** PowerConsumption**74 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 100 100 101 -* Sleep Mode: 5uA @ 3.3v 102 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 76 +(% style="display:none" %) (%%) 103 103 78 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 104 104 105 105 106 - ==1.4Applications==81 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 107 107 83 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 108 109 -* Horizontal distance measurement 110 -* Parking management system 111 -* Object proximity and presence detection 112 -* Intelligent trash can management system 113 -* Robot obstacle avoidance 114 -* Automatic control 115 -* Sewer 85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 116 116 117 117 88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 118 118 119 - (%style="display:none"%)90 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 120 120 121 - == 1.5 Sleepmodedworkingmode==92 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 122 122 123 123 124 - (% style="color:blue"%)**DeepSleepMode: **(%%)Sensordoesn'thaveanyLoRaWANactivate.This mode isusedforstorageandshipping tosave battery life.95 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 125 125 126 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 127 127 98 +(% style="color:blue" %)**Register the device** 128 128 129 - == 1.6 Button&LEDs100 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 130 130 131 131 132 - [[image:Main.User ManualforLoRaWANEndNodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]103 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 133 133 105 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 134 134 135 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 137 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 140 -))) 141 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 142 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 143 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 144 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 145 -))) 146 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 147 147 108 +(% style="color:blue" %)**Add APP EUI in the application** 148 148 149 149 150 - == 1.7 BLEconnection111 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 151 151 152 152 153 - LDS12-LBsupportBLE remoteconfigure.114 +(% style="color:blue" %)**Add APP KEY** 154 154 155 - BLE can beusedtofigurethearameterof sensororsee the consoleutput fromsensor. BLE will beonly activate onbelow case:116 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 156 156 157 -* Press button to send an uplink 158 -* Press button to active device. 159 -* Device Power on or reset. 160 160 161 - Ifthere isno activityconnectionon BLE in 60 seconds, sensorwill shut down BLE module toenterlowpowermode.119 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 162 162 163 163 164 - ==1.8PinDefinitions==122 +Press the button for 5 seconds to activate the LDS12-LB. 165 165 166 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]124 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 167 167 126 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 168 168 169 -== 1.9 Mechanical == 170 170 129 +== 2.3 Uplink Payload == 171 171 172 - [[image:Main.UserManual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]131 +=== 2.3.1 Device Status, FPORT~=5 === 173 173 174 174 175 - [[image:Main.UserManualforLoRaWAN EndNodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]134 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 176 176 136 +The Payload format is as below. 177 177 178 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 138 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 139 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 140 +**Size(bytes)** 141 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 142 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 179 179 144 +Example parse in TTNv3 180 180 181 - (% style="color:blue" %)**ProbeMechanical:**146 +[[image:image-20230805103904-1.png||height="131" width="711"]] 182 182 148 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 183 183 184 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]150 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 185 185 152 +(% style="color:blue" %)**Frequency Band**: 186 186 187 - = 2. Configure LDS12-LBto connect to LoRaWAN network =154 +0x01: EU868 188 188 189 - ==2.1How it works ==156 +0x02: US915 190 190 158 +0x03: IN865 191 191 192 - The LDS12-LB is configured as (% style="color:#037691"%)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +0x04: AU915 193 193 194 - (% style="display:none"%) (%%)162 +0x05: KZ865 195 195 196 - ==2.2 Quick guide to connect to LoRaWAN server (OTAA) ==164 +0x06: RU864 197 197 166 +0x07: AS923 198 198 199 - Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.168 +0x08: AS923-1 200 200 201 - TheLPS8v2is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.170 +0x09: AS923-2 202 202 203 - [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none"%)172 +0x0a: AS923-3 204 204 174 +0x0b: CN470 205 205 206 - (% style="color:blue"%)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.176 +0x0c: EU433 207 207 208 - Each LDS12-LB is shippedwith a sticker with the default device EUI as below:178 +0x0d: KR920 209 209 210 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233"width="502"]]180 +0x0e: MA869 211 211 182 +(% style="color:blue" %)**Sub-Band**: 212 212 213 - Youcanenter this key in the LoRaWANServer portal. BelowisTTNscreen shot:184 +AU915 and US915:value 0x00 ~~ 0x08 214 214 186 +CN470: value 0x0B ~~ 0x0C 215 215 216 - (% style="color:blue"%)**Registerthe device**188 +Other Bands: Always 0x00 217 217 218 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]190 +(% style="color:blue" %)**Battery Info**: 219 219 192 +Check the battery voltage. 220 220 221 - (% style="color:blue"%)**AddAPPEUI and DEVEUI**194 +Ex1: 0x0B45 = 2885mV 222 222 223 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]196 +Ex2: 0x0B49 = 2889mV 224 224 225 225 226 - (% style="color:blue"%)**AddAPP EUIintheapplication**199 +=== 2.3.2 Uplink Payload, FPORT~=2 === 227 227 228 228 229 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 202 +((( 203 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 230 230 205 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 231 231 232 -(% style="color:blue" %)**Add APP KEY** 233 - 234 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 235 - 236 - 237 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 238 - 239 - 240 -Press the button for 5 seconds to activate the LDS12-LB. 241 - 242 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 243 - 244 -After join success, it will start to upload messages to TTN and you can see the messages in the panel. 245 - 246 - 247 -== 2.3 Uplink Payload == 248 - 249 - 250 -((( 251 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 207 +Uplink Payload totals 11 bytes. 252 252 ))) 253 253 254 -((( 255 -Uplink payload includes in total 11 bytes. 256 -))) 257 - 258 258 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 259 -|=(% style="width: 6 2.5px;background-color:#4F81BD;color:white" %)(((211 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 260 260 **Size(bytes)** 261 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**262 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H 2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((263 -[[Temperature DS18B20>>||anchor="H 2.3.2DS18B20Temperaturesensor"]]264 -)))|[[Distance>>||anchor="H 2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((265 -[[Interrupt 2.3.5InterruptPin"]]266 -)))|[[LiDAR temp>>||anchor="H 2.3.6LiDARtemp"]]|(((267 -[[Message Type>>||anchor="H 2.3.7MessageType"]]213 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 214 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 215 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 216 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 217 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 218 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 219 +[[Message Type>>||anchor="HMessageType"]] 268 268 ))) 269 269 270 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]222 +[[image:image-20230805104104-2.png||height="136" width="754"]] 271 271 272 272 273 -=== 2.3.1Battery Info ===225 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 274 274 275 275 276 276 Check the battery voltage for LDS12-LB. ... ... @@ -280,7 +280,7 @@ 280 280 Ex2: 0x0B49 = 2889mV 281 281 282 282 283 -=== 2.3.2DS18B20 Temperature sensor ===235 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 284 284 285 285 286 286 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. ... ... @@ -293,7 +293,7 @@ 293 293 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 294 294 295 295 296 -=== 2.3.3Distance ===248 +==== (% style="color:blue" %)**Distance**(%%) ==== 297 297 298 298 299 299 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. ... ... @@ -304,7 +304,7 @@ 304 304 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 305 305 306 306 307 -=== 2.3.4Distance signal strength ===259 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 308 308 309 309 310 310 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. ... ... @@ -317,21 +317,36 @@ 317 317 Customers can judge whether they need to adjust the environment based on the signal strength. 318 318 319 319 320 - ===2.3.5 InterruptPin===272 +**1) When the sensor detects valid data:** 321 321 274 +[[image:image-20230805155335-1.png||height="145" width="724"]] 322 322 276 + 277 +**2) When the sensor detects invalid data:** 278 + 279 +[[image:image-20230805155428-2.png||height="139" width="726"]] 280 + 281 + 282 +**3) When the sensor is not connected:** 283 + 284 +[[image:image-20230805155515-3.png||height="143" width="725"]] 285 + 286 + 287 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 288 + 289 + 323 323 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 324 324 325 -Note: The Internet Pin is a separate pin in the screw terminal. See 292 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 326 326 327 327 **Example:** 328 328 329 -0x00: Normal uplink packet. 296 +If byte[0]&0x01=0x00 : Normal uplink packet. 330 330 331 -0x01: Interrupt Uplink Packet. 298 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 332 332 333 333 334 -=== 2.3.6LiDAR temp ===301 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 335 335 336 336 337 337 Characterize the internal temperature value of the sensor. ... ... @@ -341,7 +341,7 @@ 341 341 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 342 342 343 343 344 -=== 2.3.7Message Type ===311 +==== (% style="color:blue" %)**Message Type**(%%) ==== 345 345 346 346 347 347 ((( ... ... @@ -354,14 +354,97 @@ 354 354 355 355 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 356 356 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 357 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %) [[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]358 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %) [[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]324 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 325 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 359 359 327 +[[image:image-20230805150315-4.png||height="233" width="723"]] 360 360 361 361 362 -=== 2.3. 8 Decodepayloadin TheThingsNetwork===330 +=== 2.3.3 Historical measuring distance, FPORT~=3 === 363 363 364 364 333 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 334 + 335 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 336 + 337 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 338 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 339 +**Size(bytes)** 340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 341 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 342 +Reserve(0xFF) 343 +)))|Distance|Distance signal strength|(% style="width:88px" %)((( 344 +LiDAR temp 345 +)))|(% style="width:85px" %)Unix TimeStamp 346 + 347 +**Interrupt flag & Interrupt level:** 348 + 349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 350 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 351 +**Size(bit)** 352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 353 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 354 +Interrupt flag 355 +))) 356 + 357 +* ((( 358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 359 +))) 360 + 361 +For example, in the US915 band, the max payload for different DR is: 362 + 363 +**a) DR0:** max is 11 bytes so one entry of data 364 + 365 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 366 + 367 +**c) DR2:** total payload includes 11 entries of data 368 + 369 +**d) DR3:** total payload includes 22 entries of data. 370 + 371 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 372 + 373 + 374 +**Downlink:** 375 + 376 +0x31 64 CC 68 0C 64 CC 69 74 05 377 + 378 +[[image:image-20230805144936-2.png||height="113" width="746"]] 379 + 380 +**Uplink:** 381 + 382 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 383 + 384 + 385 +**Parsed Value:** 386 + 387 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 388 + 389 + 390 +[360,176,30,High,True,2023-08-04 02:53:00], 391 + 392 +[355,168,30,Low,False,2023-08-04 02:53:29], 393 + 394 +[245,211,30,Low,False,2023-08-04 02:54:29], 395 + 396 +[57,700,30,Low,False,2023-08-04 02:55:29], 397 + 398 +[361,164,30,Low,True,2023-08-04 02:56:00], 399 + 400 +[337,184,30,Low,False,2023-08-04 02:56:40], 401 + 402 +[20,4458,30,Low,False,2023-08-04 02:57:40], 403 + 404 +[362,173,30,Low,False,2023-08-04 02:58:53], 405 + 406 + 407 +**History read from serial port:** 408 + 409 +[[image:image-20230805145056-3.png]] 410 + 411 + 412 +=== 2.3.4 Decode payload in The Things Network === 413 + 414 + 365 365 While using TTN network, you can add the payload format to decode the payload. 366 366 367 367 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] ... ... @@ -376,15 +376,9 @@ 376 376 ))) 377 377 378 378 379 -== 2.4 Uplink Interval==429 +== 2.4 Show Data in DataCake IoT Server == 380 380 381 381 382 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 383 - 384 - 385 -== 2.5 Show Data in DataCake IoT Server == 386 - 387 - 388 388 ((( 389 389 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 390 390 ))) ... ... @@ -417,13 +417,13 @@ 417 417 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 418 418 419 419 420 -== 2. 6Datalog Feature ==464 +== 2.5 Datalog Feature == 421 421 422 422 423 423 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 424 424 425 425 426 -=== 2. 6.1 Ways to get datalog via LoRaWAN ===470 +=== 2.5.1 Ways to get datalog via LoRaWAN === 427 427 428 428 429 429 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. ... ... @@ -435,14 +435,11 @@ 435 435 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 436 436 ))) 437 437 438 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 439 439 440 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 441 441 484 +=== 2.5.2 Unix TimeStamp === 442 442 443 -=== 2.6.2 Unix TimeStamp === 444 444 445 - 446 446 LDS12-LB uses Unix TimeStamp format based on 447 447 448 448 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] ... ... @@ -457,7 +457,7 @@ 457 457 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 458 458 459 459 460 -=== 2. 6.3 Set Device Time ===501 +=== 2.5.3 Set Device Time === 461 461 462 462 463 463 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. ... ... @@ -467,13 +467,13 @@ 467 467 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 468 468 469 469 470 -=== 2. 6.4 Poll sensor value ===511 +=== 2.5.4 Poll sensor value === 471 471 472 472 473 473 Users can poll sensor values based on timestamps. Below is the downlink command. 474 474 475 475 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 476 -|(% colspan="4" style="background-color:# d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**517 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 477 477 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 478 478 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 479 479 ... ... @@ -494,7 +494,7 @@ 494 494 ))) 495 495 496 496 497 -== 2. 7Frequency Plans ==538 +== 2.6 Frequency Plans == 498 498 499 499 500 500 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. ... ... @@ -502,96 +502,8 @@ 502 502 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 503 503 504 504 505 - ==2.8 LiDARToF Measurement==546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB 506 506 507 -=== 2.8.1 Principle of Distance Measurement === 508 - 509 - 510 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 511 - 512 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 513 - 514 - 515 -=== 2.8.2 Distance Measurement Characteristics === 516 - 517 - 518 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 519 - 520 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 521 - 522 - 523 -((( 524 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 525 -))) 526 - 527 -((( 528 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 529 -))) 530 - 531 -((( 532 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 533 -))) 534 - 535 - 536 -((( 537 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 538 -))) 539 - 540 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 541 - 542 -((( 543 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 544 -))) 545 - 546 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 547 - 548 -((( 549 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 550 -))) 551 - 552 - 553 -=== 2.8.3 Notice of usage === 554 - 555 - 556 -Possible invalid /wrong reading for LiDAR ToF tech: 557 - 558 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 559 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 560 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 561 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 562 - 563 - 564 - 565 -=== 2.8.4 Reflectivity of different objects === 566 - 567 - 568 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 569 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 570 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 571 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 572 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 573 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 574 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 575 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 576 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 577 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 578 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 579 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 580 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 581 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 582 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 583 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 584 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 585 -Unpolished white metal surface 586 -)))|(% style="width:93px" %)130% 587 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 588 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 589 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 590 - 591 - 592 - 593 -= 3. Configure LDS12-LB = 594 - 595 595 == 3.1 Configure Methods == 596 596 597 597 ... ... @@ -603,8 +603,6 @@ 603 603 604 604 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 605 605 606 - 607 - 608 608 == 3.2 General Commands == 609 609 610 610 ... ... @@ -673,9 +673,9 @@ 673 673 === 3.3.2 Set Interrupt Mode === 674 674 675 675 676 -Feature, Set Interrupt mode for PA8ofpin.627 +Feature, Set Interrupt mode for pin of GPIO_EXTI. 677 677 678 -When AT+INTMOD=0 is set, P A8is used as a digital input port.629 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port. 679 679 680 680 (% style="color:blue" %)**AT Command: AT+INTMOD** 681 681 ... ... @@ -686,7 +686,11 @@ 686 686 OK 687 687 the mode is 0 =Disable Interrupt 688 688 ))) 689 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 640 +|(% style="width:154px" %)((( 641 +AT+INTMOD=2 642 + 643 +(default) 644 +)))|(% style="width:196px" %)((( 690 690 Set Transmit Interval 691 691 0. (Disable Interrupt), 692 692 ~1. (Trigger by rising and falling edge) ... ... @@ -705,84 +705,6 @@ 705 705 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 706 706 707 707 708 - 709 -=== 3.3.3 Get Firmware Version Info === 710 - 711 - 712 -Feature: use downlink to get firmware version. 713 - 714 -(% style="color:blue" %)**Downlink Command: 0x26** 715 - 716 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 717 -|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)** 718 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 719 - 720 -* Reply to the confirmation package: 26 01 721 -* Reply to non-confirmed packet: 26 00 722 - 723 -Device will send an uplink after got this downlink command. With below payload: 724 - 725 -Configures info payload: 726 - 727 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 728 -|=(% style="background-color:#4F81BD;color:white" %)((( 729 -**Size(bytes)** 730 -)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1** 731 -|**Value**|Software Type|((( 732 -Frequency Band 733 -)))|Sub-band|((( 734 -Firmware Version 735 -)))|Sensor Type|Reserve|((( 736 -[[Message Type>>||anchor="H2.3.7MessageType"]] 737 -Always 0x02 738 -))) 739 - 740 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 741 - 742 -(% style="color:#037691" %)**Frequency Band**: 743 - 744 -0x01: EU868 745 - 746 -0x02: US915 747 - 748 -0x03: IN865 749 - 750 -0x04: AU915 751 - 752 -0x05: KZ865 753 - 754 -0x06: RU864 755 - 756 -0x07: AS923 757 - 758 -0x08: AS923-1 759 - 760 -0x09: AS923-2 761 - 762 -0xa0: AS923-3 763 - 764 - 765 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 766 - 767 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 768 - 769 -(% style="color:#037691" %)**Sensor Type**: 770 - 771 -0x01: LSE01 772 - 773 -0x02: LDDS75 774 - 775 -0x03: LDDS20 776 - 777 -0x04: LLMS01 778 - 779 -0x05: LSPH01 780 - 781 -0x06: LSNPK01 782 - 783 -0x07: LLDS12 784 - 785 - 786 786 = 4. Battery & Power Consumption = 787 787 788 788 ... ... @@ -811,8 +811,6 @@ 811 811 812 812 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 813 813 814 - 815 - 816 816 = 6. FAQ = 817 817 818 818 == 6.1 What is the frequency plan for LDS12-LB? == ... ... @@ -853,7 +853,7 @@ 853 853 = 8. Order Info = 854 854 855 855 856 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**731 +Part Number: (% style="color:blue" %)**DS20L-XXX** 857 857 858 858 (% style="color:red" %)**XXX**(%%): **The default frequency band** 859 859 ... ... @@ -873,14 +873,12 @@ 873 873 874 874 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 875 875 876 - 877 - 878 878 = 9. Packing Info = 879 879 880 880 881 881 (% style="color:#037691" %)**Package Includes**: 882 882 883 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1756 +* DS20L LoRaWAN Smart Distance Detector x 1 884 884 885 885 (% style="color:#037691" %)**Dimension and weight**: 886 886 ... ... @@ -892,8 +892,6 @@ 892 892 893 893 * Weight / pcs : g 894 894 895 - 896 - 897 897 = 10. Support = 898 898 899 899
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content