Last modified by Mengting Qiu on 2023/12/14 11:15

From version 84.2
edited by Xiaoling
on 2023/06/15 15:30
Change comment: There is no comment for this version
To version 113.5
edited by Xiaoling
on 2023/11/10 09:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,255 +18,210 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 -
58 58  == 1.3 Specification ==
59 59  
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
62 62  
63 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
67 67  
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 -* Distance resolution : 5mm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
66 +(% style="display:none" %)
82 82  
83 -(% style="color:#037691" %)**LoRa Spec:**
84 84  
85 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 -* Max +22 dBm constant RF output vs.
87 -* RX sensitivity: down to -139 dBm.
88 -* Excellent blocking immunity
69 += 2. Configure DS20L to connect to LoRaWAN network =
89 89  
90 -(% style="color:#037691" %)**Battery:**
71 +== 2.1 How it works ==
91 91  
92 -* Li/SOCI2 un-chargeable battery
93 -* Capacity: 8500mAh
94 -* Self-Discharge: <1% / Year @ 25°C
95 -* Max continuously current: 130mA
96 -* Max boost current: 2A, 1 second
97 97  
98 -(% style="color:#037691" %)**Power Consumption**
74 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
99 99  
100 -* Sleep Mode: 5uA @ 3.3v
101 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
76 +(% style="display:none" %) (%%)
102 102  
78 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
103 103  
104 -== 1.4 Applications ==
105 105  
81 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
106 106  
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
83 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
114 114  
85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
115 115  
116 -(% style="display:none" %)
117 117  
118 -== 1.5 Sleep mode and working mode ==
88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
119 119  
90 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
120 120  
121 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
92 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
122 122  
123 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124 124  
95 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
125 125  
126 -== 1.6 Button & LEDs ==
127 127  
98 +(% style="color:blue" %)**Register the device**
128 128  
129 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
100 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
130 130  
131 131  
132 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
134 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
137 -)))
138 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 -)))
143 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
103 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
144 144  
105 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
145 145  
146 -== 1.7 BLE connection ==
147 147  
108 +(% style="color:blue" %)**Add APP EUI in the application**
148 148  
149 -LDS12-LB support BLE remote configure.
150 150  
151 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
111 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
152 152  
153 -* Press button to send an uplink
154 -* Press button to active device.
155 -* Device Power on or reset.
156 156  
157 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
114 +(% style="color:blue" %)**Add APP KEY**
158 158  
116 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
159 159  
160 -== 1.8 Pin Definitions ==
161 161  
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
119 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
163 163  
164 164  
165 -== 1.9 Mechanical ==
122 +Press the button for 5 seconds to activate the LDS12-LB.
166 166  
124 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
167 167  
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
126 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
169 169  
170 170  
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
129 +== 2.3 ​Uplink Payload ==
172 172  
131 +=== 2.3.1 Device Status, FPORT~=5 ===
173 173  
174 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
175 175  
134 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
176 176  
177 -(% style="color:blue" %)**Probe Mechanical:**
136 +The Payload format is as below.
178 178  
138 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
139 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
140 +**Size(bytes)**
141 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
142 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
179 179  
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
144 +Example parse in TTNv3
181 181  
146 +[[image:image-20230805103904-1.png||height="131" width="711"]]
182 182  
183 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
148 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
184 184  
185 -== 2.1 How it works ==
150 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
186 186  
152 +(% style="color:blue" %)**Frequency Band**:
187 187  
188 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 +0x01: EU868
189 189  
190 -(% style="display:none" %) (%%)
156 +0x02: US915
191 191  
192 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158 +0x03: IN865
193 193  
160 +0x04: AU915
194 194  
195 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
162 +0x05: KZ865
196 196  
197 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
164 +0x06: RU864
198 198  
199 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
166 +0x07: AS923
200 200  
168 +0x08: AS923-1
201 201  
202 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
170 +0x09: AS923-2
203 203  
204 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
172 +0x0a: AS923-3
205 205  
206 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
174 +0x0b: CN470
207 207  
176 +0x0c: EU433
208 208  
209 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
178 +0x0d: KR920
210 210  
180 +0x0e: MA869
211 211  
212 -(% style="color:blue" %)**Register the device**
182 +(% style="color:blue" %)**Sub-Band**:
213 213  
214 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
184 +AU915 and US915:value 0x00 ~~ 0x08
215 215  
186 +CN470: value 0x0B ~~ 0x0C
216 216  
217 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
188 +Other Bands: Always 0x00
218 218  
219 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
190 +(% style="color:blue" %)**Battery Info**:
220 220  
192 +Check the battery voltage.
221 221  
222 -(% style="color:blue" %)**Add APP EUI in the application**
194 +Ex1: 0x0B45 = 2885mV
223 223  
196 +Ex2: 0x0B49 = 2889mV
224 224  
225 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
226 226  
199 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
227 227  
228 -(% style="color:blue" %)**Add APP KEY**
229 229  
230 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
202 +(((
203 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
231 231  
205 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
232 232  
233 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
234 -
235 -
236 -Press the button for 5 seconds to activate the LDS12-LB.
237 -
238 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239 -
240 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241 -
242 -
243 -== 2.3 ​Uplink Payload ==
244 -
245 -
246 -(((
247 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
207 +Uplink Payload totals 11 bytes.
248 248  )))
249 249  
250 -(((
251 -Uplink payload includes in total 11 bytes.
252 -)))
253 -
254 254  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
255 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
211 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
256 256  **Size(bytes)**
257 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
258 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
259 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
260 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
261 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
262 -)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
263 -[[Message Type>>||anchor="H2.3.7MessageType"]]
213 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
214 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
215 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
216 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
217 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
218 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
219 +[[Message Type>>||anchor="HMessageType"]]
264 264  )))
265 265  
266 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
222 +[[image:image-20230805104104-2.png||height="136" width="754"]]
267 267  
268 268  
269 -=== 2.3.1 Battery Info ===
225 +==== (% style="color:blue" %)**Battery Info**(%%) ====
270 270  
271 271  
272 272  Check the battery voltage for LDS12-LB.
... ... @@ -276,7 +276,7 @@
276 276  Ex2: 0x0B49 = 2889mV
277 277  
278 278  
279 -=== 2.3.2 DS18B20 Temperature sensor ===
235 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
280 280  
281 281  
282 282  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -289,7 +289,7 @@
289 289  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
290 290  
291 291  
292 -=== 2.3.3 Distance ===
248 +==== (% style="color:blue" %)**Distance**(%%) ====
293 293  
294 294  
295 295  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -300,7 +300,7 @@
300 300  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
301 301  
302 302  
303 -=== 2.3.4 Distance signal strength ===
259 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
304 304  
305 305  
306 306  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -313,21 +313,36 @@
313 313  Customers can judge whether they need to adjust the environment based on the signal strength.
314 314  
315 315  
316 -=== 2.3.5 Interrupt Pin ===
272 +**1) When the sensor detects valid data:**
317 317  
274 +[[image:image-20230805155335-1.png||height="145" width="724"]]
318 318  
276 +
277 +**2) When the sensor detects invalid data:**
278 +
279 +[[image:image-20230805155428-2.png||height="139" width="726"]]
280 +
281 +
282 +**3) When the sensor is not connected:**
283 +
284 +[[image:image-20230805155515-3.png||height="143" width="725"]]
285 +
286 +
287 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
288 +
289 +
319 319  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
320 320  
321 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
292 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
322 322  
323 323  **Example:**
324 324  
325 -0x00: Normal uplink packet.
296 +If byte[0]&0x01=0x00 : Normal uplink packet.
326 326  
327 -0x01: Interrupt Uplink Packet.
298 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
328 328  
329 329  
330 -=== 2.3.6 LiDAR temp ===
301 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
331 331  
332 332  
333 333  Characterize the internal temperature value of the sensor.
... ... @@ -337,7 +337,7 @@
337 337  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
338 338  
339 339  
340 -=== 2.3.7 Message Type ===
311 +==== (% style="color:blue" %)**Message Type**(%%) ====
341 341  
342 342  
343 343  (((
... ... @@ -350,13 +350,97 @@
350 350  
351 351  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
352 352  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
353 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
354 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
324 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
325 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
355 355  
327 +[[image:image-20230805150315-4.png||height="233" width="723"]]
356 356  
357 -=== 2.3.8 Decode payload in The Things Network ===
358 358  
330 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
359 359  
332 +
333 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
334 +
335 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
336 +
337 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
338 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
339 +**Size(bytes)**
340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
341 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
342 +Reserve(0xFF)
343 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
344 +LiDAR temp
345 +)))|(% style="width:85px" %)Unix TimeStamp
346 +
347 +**Interrupt flag & Interrupt level:**
348 +
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
350 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
351 +**Size(bit)**
352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
353 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
354 +Interrupt flag
355 +)))
356 +
357 +* (((
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
359 +)))
360 +
361 +For example, in the US915 band, the max payload for different DR is:
362 +
363 +**a) DR0:** max is 11 bytes so one entry of data
364 +
365 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
366 +
367 +**c) DR2:** total payload includes 11 entries of data
368 +
369 +**d) DR3:** total payload includes 22 entries of data.
370 +
371 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
372 +
373 +
374 +**Downlink:**
375 +
376 +0x31 64 CC 68 0C 64 CC 69 74 05
377 +
378 +[[image:image-20230805144936-2.png||height="113" width="746"]]
379 +
380 +**Uplink:**
381 +
382 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
383 +
384 +
385 +**Parsed Value:**
386 +
387 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
388 +
389 +
390 +[360,176,30,High,True,2023-08-04 02:53:00],
391 +
392 +[355,168,30,Low,False,2023-08-04 02:53:29],
393 +
394 +[245,211,30,Low,False,2023-08-04 02:54:29],
395 +
396 +[57,700,30,Low,False,2023-08-04 02:55:29],
397 +
398 +[361,164,30,Low,True,2023-08-04 02:56:00],
399 +
400 +[337,184,30,Low,False,2023-08-04 02:56:40],
401 +
402 +[20,4458,30,Low,False,2023-08-04 02:57:40],
403 +
404 +[362,173,30,Low,False,2023-08-04 02:58:53],
405 +
406 +
407 +**History read from serial port:**
408 +
409 +[[image:image-20230805145056-3.png]]
410 +
411 +
412 +=== 2.3.4 Decode payload in The Things Network ===
413 +
414 +
360 360  While using TTN network, you can add the payload format to decode the payload.
361 361  
362 362  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -371,15 +371,9 @@
371 371  )))
372 372  
373 373  
374 -== 2.4 Uplink Interval ==
429 +== 2.4 ​Show Data in DataCake IoT Server ==
375 375  
376 376  
377 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
378 -
379 -
380 -== 2.5 ​Show Data in DataCake IoT Server ==
381 -
382 -
383 383  (((
384 384  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
385 385  )))
... ... @@ -412,13 +412,13 @@
412 412  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
413 413  
414 414  
415 -== 2.6 Datalog Feature ==
464 +== 2.5 Datalog Feature ==
416 416  
417 417  
418 418  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
419 419  
420 420  
421 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
470 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
422 422  
423 423  
424 424  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -430,14 +430,11 @@
430 430  b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
431 431  )))
432 432  
433 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
434 434  
435 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
436 436  
484 +=== 2.5.2 Unix TimeStamp ===
437 437  
438 -=== 2.6.2 Unix TimeStamp ===
439 439  
440 -
441 441  LDS12-LB uses Unix TimeStamp format based on
442 442  
443 443  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
... ... @@ -452,7 +452,7 @@
452 452  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
453 453  
454 454  
455 -=== 2.6.3 Set Device Time ===
501 +=== 2.5.3 Set Device Time ===
456 456  
457 457  
458 458  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -462,13 +462,13 @@
462 462  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
463 463  
464 464  
465 -=== 2.6.4 Poll sensor value ===
511 +=== 2.5.4 Poll sensor value ===
466 466  
467 467  
468 468  Users can poll sensor values based on timestamps. Below is the downlink command.
469 469  
470 470  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
471 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
517 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
472 472  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
473 473  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
474 474  
... ... @@ -489,7 +489,7 @@
489 489  )))
490 490  
491 491  
492 -== 2.7 Frequency Plans ==
538 +== 2.6 Frequency Plans ==
493 493  
494 494  
495 495  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -497,94 +497,8 @@
497 497  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
498 498  
499 499  
500 -== 2.8 LiDAR ToF Measurement ==
546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
501 501  
502 -=== 2.8.1 Principle of Distance Measurement ===
503 -
504 -
505 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
506 -
507 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
508 -
509 -
510 -=== 2.8.2 Distance Measurement Characteristics ===
511 -
512 -
513 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
514 -
515 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
516 -
517 -
518 -(((
519 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
520 -)))
521 -
522 -(((
523 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
524 -)))
525 -
526 -(((
527 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
528 -)))
529 -
530 -
531 -(((
532 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
533 -)))
534 -
535 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
536 -
537 -(((
538 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
539 -)))
540 -
541 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
542 -
543 -(((
544 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
545 -)))
546 -
547 -
548 -=== 2.8.3 Notice of usage ===
549 -
550 -
551 -Possible invalid /wrong reading for LiDAR ToF tech:
552 -
553 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
554 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
555 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
556 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
557 -
558 -
559 -=== 2.8.4  Reflectivity of different objects ===
560 -
561 -
562 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
563 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
564 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
565 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
566 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
567 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
568 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
569 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
570 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
571 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
572 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
573 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
574 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
575 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
576 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
577 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
578 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
579 -Unpolished white metal surface
580 -)))|(% style="width:93px" %)130%
581 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
582 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
583 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
584 -
585 -
586 -= 3. Configure LDS12-LB =
587 -
588 588  == 3.1 Configure Methods ==
589 589  
590 590  
... ... @@ -596,7 +596,6 @@
596 596  
597 597  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
598 598  
599 -
600 600  == 3.2 General Commands ==
601 601  
602 602  
... ... @@ -665,9 +665,9 @@
665 665  === 3.3.2 Set Interrupt Mode ===
666 666  
667 667  
668 -Feature, Set Interrupt mode for PA8 of pin.
627 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
669 669  
670 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
629 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
671 671  
672 672  (% style="color:blue" %)**AT Command: AT+INTMOD**
673 673  
... ... @@ -678,7 +678,11 @@
678 678  OK
679 679  the mode is 0 =Disable Interrupt
680 680  )))
681 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
640 +|(% style="width:154px" %)(((
641 +AT+INTMOD=2
642 +
643 +(default)
644 +)))|(% style="width:196px" %)(((
682 682  Set Transmit Interval
683 683  0. (Disable Interrupt),
684 684  ~1. (Trigger by rising and falling edge)
... ... @@ -697,83 +697,6 @@
697 697  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
698 698  
699 699  
700 -=== 3.3.3 Get Firmware Version Info ===
701 -
702 -
703 -Feature: use downlink to get firmware version.
704 -
705 -(% style="color:blue" %)**Downlink Command: 0x26**
706 -
707 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
708 -|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
709 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
710 -
711 -* Reply to the confirmation package: 26 01
712 -* Reply to non-confirmed packet: 26 00
713 -
714 -Device will send an uplink after got this downlink command. With below payload:
715 -
716 -Configures info payload:
717 -
718 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
719 -|=(% style="background-color:#4F81BD;color:white" %)(((
720 -**Size(bytes)**
721 -)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
722 -|**Value**|Software Type|(((
723 -Frequency Band
724 -)))|Sub-band|(((
725 -Firmware Version
726 -)))|Sensor Type|Reserve|(((
727 -[[Message Type>>||anchor="H2.3.7MessageType"]]
728 -Always 0x02
729 -)))
730 -
731 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
732 -
733 -(% style="color:#037691" %)**Frequency Band**:
734 -
735 -*0x01: EU868
736 -
737 -*0x02: US915
738 -
739 -*0x03: IN865
740 -
741 -*0x04: AU915
742 -
743 -*0x05: KZ865
744 -
745 -*0x06: RU864
746 -
747 -*0x07: AS923
748 -
749 -*0x08: AS923-1
750 -
751 -*0x09: AS923-2
752 -
753 -*0xa0: AS923-3
754 -
755 -
756 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
757 -
758 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
759 -
760 -(% style="color:#037691" %)**Sensor Type**:
761 -
762 -0x01: LSE01
763 -
764 -0x02: LDDS75
765 -
766 -0x03: LDDS20
767 -
768 -0x04: LLMS01
769 -
770 -0x05: LSPH01
771 -
772 -0x06: LSNPK01
773 -
774 -0x07: LLDS12
775 -
776 -
777 777  = 4. Battery & Power Consumption =
778 778  
779 779  
... ... @@ -802,7 +802,6 @@
802 802  
803 803  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
804 804  
805 -
806 806  = 6. FAQ =
807 807  
808 808  == 6.1 What is the frequency plan for LDS12-LB? ==
... ... @@ -843,7 +843,7 @@
843 843  = 8. Order Info =
844 844  
845 845  
846 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
847 847  
848 848  (% style="color:red" %)**XXX**(%%): **The default frequency band**
849 849  
... ... @@ -863,13 +863,12 @@
863 863  
864 864  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
865 865  
866 -
867 867  = 9. ​Packing Info =
868 868  
869 869  
870 870  (% style="color:#037691" %)**Package Includes**:
871 871  
872 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
873 873  
874 874  (% style="color:#037691" %)**Dimension and weight**:
875 875  
... ... @@ -881,7 +881,6 @@
881 881  
882 882  * Weight / pcs : g
883 883  
884 -
885 885  = 10. Support =
886 886  
887 887  
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content