Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.7
edited by Xiaoling
on 2023/06/14 16:56
Change comment: There is no comment for this version
To version 80.3
edited by Xiaoling
on 2023/06/14 15:53
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,16 +44,19 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
56 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
59 +
57 57  == 1.3 Specification ==
58 58  
59 59  
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -100,29 +100,145 @@
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 102  
103 -== 1.4 Applications ==
89 +== 1.4 Suitable Container & Liquid ==
104 104  
105 105  
106 -* Horizontal distance measurement
107 -* Parking management system
108 -* Object proximity and presence detection
109 -* Intelligent trash can management system
110 -* Robot obstacle avoidance
111 -* Automatic control
112 -* Sewer
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
113 113  
114 114  
115 115  (% style="display:none" %)
116 116  
117 -== 1.5 Sleep mode and working mode ==
102 +== 1.5 Install DDS20-LB ==
118 118  
119 119  
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
106 +
107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 +
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
110 +
111 +
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
115 +
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 +)))
119 +
120 +[[image:image-20230613143052-5.png]]
121 +
122 +
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
124 +
125 +[[image:image-20230613143125-6.png]]
126 +
127 +
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
131 +
132 +(((
133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
135 +
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
138 +)))
139 +
140 +(((
141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
143 +
144 +
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
148 +
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
152 +
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
159 +
160 +(((
161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
163 +
164 +
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
168 +
169 +
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
173 +
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
177 +
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
181 +
182 +(((
183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
184 +)))
185 +
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
187 +
188 +
189 +(((
190 +(% style="color:red" %)**Note :**
191 +
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
194 +
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
198 +
199 +
200 +== 1.6 Applications ==
201 +
202 +
203 +* Smart liquid control solution
204 +
205 +* Smart liquefied gas solution
206 +
207 +
208 +== 1.7 Precautions ==
209 +
210 +
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
212 +
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
214 +
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
216 +
217 +(% style="display:none" %)
218 +
219 +== 1.8 Sleep mode and working mode ==
220 +
221 +
120 120  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
121 121  
122 122  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
123 123  
124 124  
125 -== 1.6 Button & LEDs ==
227 +== 1.9 Button & LEDs ==
126 126  
127 127  
128 128  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -141,11 +141,12 @@
141 141  )))
142 142  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
143 143  
144 -== 1.7 BLE connection ==
145 145  
247 +== 1.10 BLE connection ==
146 146  
147 -LDS12-LB support BLE remote configure.
148 148  
250 +DDS20-LB support BLE remote configure.
251 +
149 149  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
150 150  
151 151  * Press button to send an uplink
... ... @@ -155,15 +155,14 @@
155 155  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
156 156  
157 157  
158 -== 1.8 Pin Definitions ==
261 +== 1.11 Pin Definitions ==
159 159  
160 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
263 +[[image:image-20230523174230-1.png]]
161 161  
162 162  
266 +== 1.12 Mechanical ==
163 163  
164 -== 1.9 Mechanical ==
165 165  
166 -
167 167  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
168 168  
169 169  
... ... @@ -175,17 +175,18 @@
175 175  
176 176  (% style="color:blue" %)**Probe Mechanical:**
177 177  
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
178 178  
179 179  
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
181 181  
182 182  
183 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
286 += 2. Configure DDS20-LB to connect to LoRaWAN network =
184 184  
185 185  == 2.1 How it works ==
186 186  
187 187  
188 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
189 189  
190 190  (% style="display:none" %) (%%)
191 191  
... ... @@ -196,12 +196,12 @@
196 196  
197 197  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198 198  
199 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
200 200  
201 201  
202 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
203 203  
204 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
205 205  
206 206  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
207 207  
... ... @@ -230,10 +230,10 @@
230 230  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
231 231  
232 232  
233 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
234 234  
235 235  
236 -Press the button for 5 seconds to activate the LDS12-LB.
339 +Press the button for 5 seconds to activate the DDS20-LB.
237 237  
238 238  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239 239  
... ... @@ -244,33 +244,31 @@
244 244  
245 245  
246 246  (((
247 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
248 248  )))
249 249  
250 250  (((
251 -Uplink payload includes in total 11 bytes.
354 +Uplink payload includes in total 8 bytes.
252 252  )))
253 253  
254 -
255 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
256 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
257 257  **Size(bytes)**
258 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
259 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
260 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
261 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
262 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
263 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
264 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
265 -)))
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
266 266  
267 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
268 268  
269 269  
270 270  === 2.3.1  Battery Info ===
271 271  
272 272  
273 -Check the battery voltage for LDS12-LB.
374 +Check the battery voltage for DDS20-LB.
274 274  
275 275  Ex1: 0x0B45 = 2885mV
276 276  
... ... @@ -277,50 +277,29 @@
277 277  Ex2: 0x0B49 = 2889mV
278 278  
279 279  
280 -=== 2.3.2  DS18B20 Temperature sensor ===
381 +=== 2.3.2  Distance ===
281 281  
282 282  
283 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
384 +(((
385 +Get the distance. Flat object range 20mm - 2000mm.
386 +)))
284 284  
388 +(((
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
285 285  
286 -**Example**:
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
392 +)))
287 287  
288 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
289 289  
290 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
291 291  
292 292  
293 -=== 2.3.3  Distance ===
399 +=== 2.3.3  Interrupt Pin ===
294 294  
295 295  
296 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
402 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
297 297  
298 -
299 -**Example**:
300 -
301 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
302 -
303 -
304 -=== 2.3.4  Distance signal strength ===
305 -
306 -
307 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
308 -
309 -
310 -**Example**:
311 -
312 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
313 -
314 -Customers can judge whether they need to adjust the environment based on the signal strength.
315 -
316 -
317 -=== 2.3.5  Interrupt Pin ===
318 -
319 -
320 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
321 -
322 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
323 -
324 324  **Example:**
325 325  
326 326  0x00: Normal uplink packet.
... ... @@ -328,54 +328,48 @@
328 328  0x01: Interrupt Uplink Packet.
329 329  
330 330  
331 -=== 2.3.6  LiDAR temp ===
411 +=== 2.3.4  DS18B20 Temperature sensor ===
332 332  
333 333  
334 -Characterize the internal temperature value of the sensor.
414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
335 335  
336 -**Example: **
337 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
338 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
416 +**Example**:
339 339  
418 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
340 340  
341 -=== 2.3. Message Type ===
420 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
342 342  
343 343  
423 +=== 2.3.5  Sensor Flag ===
424 +
425 +
344 344  (((
345 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
346 346  )))
347 347  
348 348  (((
349 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
350 350  )))
351 351  
352 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
353 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
354 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
355 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
356 356  
357 -=== 2.3.8  Decode payload in The Things Network ===
435 +=== 2.3.6  Decode payload in The Things Network ===
358 358  
359 359  
360 360  While using TTN network, you can add the payload format to decode the payload.
361 361  
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
362 362  
363 -[[image:1654592762713-715.png]]
442 +The payload decoder function for TTN V3 is here:
364 364  
365 -
366 366  (((
367 -The payload decoder function for TTN is here:
445 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
368 368  )))
369 369  
370 -(((
371 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
372 -)))
373 373  
374 -
375 375  == 2.4  Uplink Interval ==
376 376  
377 377  
378 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
379 379  
380 380  
381 381  == 2.5  ​Show Data in DataCake IoT Server ==
... ... @@ -403,7 +403,7 @@
403 403  
404 404  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
405 405  
406 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
407 407  
408 408  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
409 409  
... ... @@ -416,19 +416,19 @@
416 416  == 2.6 Datalog Feature ==
417 417  
418 418  
419 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
420 420  
421 421  
422 422  === 2.6.1 Ways to get datalog via LoRaWAN ===
423 423  
424 424  
425 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
426 426  
427 427  * (((
428 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
429 429  )))
430 430  * (((
431 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
432 432  )))
433 433  
434 434  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -439,7 +439,7 @@
439 439  === 2.6.2 Unix TimeStamp ===
440 440  
441 441  
442 -LDS12-LB uses Unix TimeStamp format based on
516 +DDS20-LB uses Unix TimeStamp format based on
443 443  
444 444  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
445 445  
... ... @@ -458,7 +458,7 @@
458 458  
459 459  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
460 460  
461 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
462 462  
463 463  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
464 464  
... ... @@ -486,7 +486,7 @@
486 486  )))
487 487  
488 488  (((
489 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
490 490  )))
491 491  
492 492  
... ... @@ -493,105 +493,17 @@
493 493  == 2.7 Frequency Plans ==
494 494  
495 495  
496 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
497 497  
498 498  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
499 499  
500 500  
501 -== 2.8 LiDAR ToF Measurement ==
575 += 3. Configure DDS20-LB =
502 502  
503 -=== 2.8.1 Principle of Distance Measurement ===
504 -
505 -
506 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
507 -
508 -
509 -[[image:1654831757579-263.png]]
510 -
511 -
512 -=== 2.8.2 Distance Measurement Characteristics ===
513 -
514 -
515 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
516 -
517 -[[image:1654831774373-275.png]]
518 -
519 -
520 -(((
521 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
522 -)))
523 -
524 -(((
525 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
526 -)))
527 -
528 -(((
529 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
530 -)))
531 -
532 -
533 -(((
534 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
535 -)))
536 -
537 -
538 -[[image:1654831797521-720.png]]
539 -
540 -
541 -(((
542 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
543 -)))
544 -
545 -[[image:1654831810009-716.png]]
546 -
547 -
548 -(((
549 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 -)))
551 -
552 -
553 -=== 2.8.3 Notice of usage: ===
554 -
555 -
556 -Possible invalid /wrong reading for LiDAR ToF tech:
557 -
558 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
562 -
563 -=== 2.8.4  Reflectivity of different objects ===
564 -
565 -
566 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
567 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
568 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
569 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
570 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
571 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
572 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
573 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
574 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
575 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
576 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
577 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
578 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
579 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
580 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
581 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
582 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
583 -Unpolished white metal surface
584 -)))|(% style="width:93px" %)130%
585 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
586 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
587 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
588 -
589 -= 3. Configure LDS12-LB =
590 -
591 591  == 3.1 Configure Methods ==
592 592  
593 593  
594 -LDS12-LB supports below configure method:
580 +DDS20-LB supports below configure method:
595 595  
596 596  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
597 597  
... ... @@ -599,6 +599,7 @@
599 599  
600 600  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
601 601  
588 +
602 602  == 3.2 General Commands ==
603 603  
604 604  
... ... @@ -613,10 +613,10 @@
613 613  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
614 614  
615 615  
616 -== 3.3 Commands special design for LDS12-LB ==
603 +== 3.3 Commands special design for DDS20-LB ==
617 617  
618 618  
619 -These commands only valid for LDS12-LB, as below:
606 +These commands only valid for DDS20-LB, as below:
620 620  
621 621  
622 622  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -659,6 +659,9 @@
659 659  )))
660 660  * (((
661 661  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
649 +
650 +
651 +
662 662  )))
663 663  
664 664  === 3.3.2 Set Interrupt Mode ===
... ... @@ -696,90 +696,10 @@
696 696  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
697 697  
698 698  
699 -
700 -=== 3.3.3 Get Firmware Version Info ===
701 -
702 -
703 -Feature: use downlink to get firmware version.
704 -
705 -(% style="color:#037691" %)**Downlink Command: 0x26**
706 -
707 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
708 -|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
709 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
710 -
711 -* Reply to the confirmation package: 26 01
712 -* Reply to non-confirmed packet: 26 00
713 -
714 -Device will send an uplink after got this downlink command. With below payload:
715 -
716 -Configures info payload:
717 -
718 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
719 -|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
720 -**Size(bytes)**
721 -)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
722 -|**Value**|Software Type|(((
723 -Frequency
724 -Band
725 -)))|Sub-band|(((
726 -Firmware
727 -Version
728 -)))|Sensor Type|Reserve|(((
729 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
730 -Always 0x02
731 -)))
732 -
733 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
734 -
735 -(% style="color:#037691" %)**Frequency Band**:
736 -
737 -*0x01: EU868
738 -
739 -*0x02: US915
740 -
741 -*0x03: IN865
742 -
743 -*0x04: AU915
744 -
745 -*0x05: KZ865
746 -
747 -*0x06: RU864
748 -
749 -*0x07: AS923
750 -
751 -*0x08: AS923-1
752 -
753 -*0x09: AS923-2
754 -
755 -*0xa0: AS923-3
756 -
757 -
758 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
759 -
760 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
761 -
762 -(% style="color:#037691" %)**Sensor Type**:
763 -
764 -0x01: LSE01
765 -
766 -0x02: LDDS75
767 -
768 -0x03: LDDS20
769 -
770 -0x04: LLMS01
771 -
772 -0x05: LSPH01
773 -
774 -0x06: LSNPK01
775 -
776 -0x07: LLDS12
777 -
778 -
779 779  = 4. Battery & Power Consumption =
780 780  
781 781  
782 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
783 783  
784 784  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
785 785  
... ... @@ -788,7 +788,7 @@
788 788  
789 789  
790 790  (% class="wikigeneratedid" %)
791 -User can change firmware LDS12-LB to:
701 +User can change firmware DDS20-LB to:
792 792  
793 793  * Change Frequency band/ region.
794 794  
... ... @@ -804,40 +804,42 @@
804 804  
805 805  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
806 806  
717 +
807 807  = 6. FAQ =
808 808  
809 -== 6.1 What is the frequency plan for LDS12-LB? ==
720 +== 6.1  What is the frequency plan for DDS20-LB? ==
810 810  
811 811  
812 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
813 813  
814 814  
815 -= 7Trouble Shooting =
726 +== 6.2  Can I use DDS20-LB in condensation environment? ==
816 816  
817 -== 7.1 AT Command input doesn't work ==
818 818  
729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
819 819  
820 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
821 821  
732 += 7.  Trouble Shooting =
822 822  
823 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
734 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
824 824  
825 825  
826 -(((
827 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
828 -)))
737 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
829 829  
830 -(((
831 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
832 -)))
833 833  
740 +== 7.2  AT Command input doesn't work ==
834 834  
835 -(((
836 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
837 -)))
838 838  
743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
744 +
745 +
746 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
747 +
748 +
839 839  (((
840 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
751 +
752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
841 841  )))
842 842  
843 843  
... ... @@ -844,7 +844,7 @@
844 844  = 8. Order Info =
845 845  
846 846  
847 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
848 848  
849 849  (% style="color:red" %)**XXX**(%%): **The default frequency band**
850 850  
... ... @@ -864,12 +864,13 @@
864 864  
865 865  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
866 866  
779 +
867 867  = 9. ​Packing Info =
868 868  
869 869  
870 870  (% style="color:#037691" %)**Package Includes**:
871 871  
872 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
873 873  
874 874  (% style="color:#037691" %)**Dimension and weight**:
875 875  
... ... @@ -881,6 +881,7 @@
881 881  
882 882  * Weight / pcs : g
883 883  
797 +
884 884  = 10. Support =
885 885  
886 886  
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content