Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.7
edited by Xiaoling
on 2023/06/14 16:56
Change comment: There is no comment for this version
To version 125.2
edited by Xiaoling
on 2023/11/29 08:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,174 +18,69 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
50 +
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
54 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
56 +* Operation Temperature: -40 ~~ 80 °C
57 +* Operation Humidity: 0~~99.9%RH (no Dew)
58 +* Storage Temperature: -10 ~~ 45°C
59 +* Measure Range: 3cm~~200cm @ 90% reflectivity
60 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
61 +* ToF FoV: ±9°, Total 18°
62 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
65 +== 1.4 Power Consumption ==
81 81  
82 -(% style="color:#037691" %)**LoRa Spec:**
83 83  
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
68 +(% style="color:#037691" %)**Battery Power Mode:**
88 88  
89 -(% style="color:#037691" %)**Battery:**
70 +* Idle: 0.003 mA @ 3.3v
71 +* Max : 360 mA
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
73 +(% style="color:#037691" %)**Continuously mode**:
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
75 +* Idle: 21 mA @ 3.3v
76 +* Max : 360 mA
98 98  
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
79 += 2. Configure DS20L to connect to LoRaWAN network =
102 102  
103 -== 1.4 Applications ==
104 -
105 -
106 -* Horizontal distance measurement
107 -* Parking management system
108 -* Object proximity and presence detection
109 -* Intelligent trash can management system
110 -* Robot obstacle avoidance
111 -* Automatic control
112 -* Sewer
113 -
114 -
115 -(% style="display:none" %)
116 -
117 -== 1.5 Sleep mode and working mode ==
118 -
119 -
120 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
121 -
122 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
123 -
124 -
125 -== 1.6 Button & LEDs ==
126 -
127 -
128 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
129 -
130 -
131 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
132 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
133 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
134 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
135 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
136 -)))
137 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
138 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
139 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
140 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
141 -)))
142 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
143 -
144 -== 1.7 BLE connection ==
145 -
146 -
147 -LDS12-LB support BLE remote configure.
148 -
149 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
150 -
151 -* Press button to send an uplink
152 -* Press button to active device.
153 -* Device Power on or reset.
154 -
155 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
156 -
157 -
158 -== 1.8 Pin Definitions ==
159 -
160 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
161 -
162 -
163 -
164 -== 1.9 Mechanical ==
165 -
166 -
167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
168 -
169 -
170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
171 -
172 -
173 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
174 -
175 -
176 -(% style="color:blue" %)**Probe Mechanical:**
177 -
178 -
179 -
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181 -
182 -
183 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
184 -
185 185  == 2.1 How it works ==
186 186  
187 187  
188 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
84 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
189 189  
190 190  (% style="display:none" %) (%%)
191 191  
... ... @@ -194,15 +194,14 @@
194 194  
195 195  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196 196  
197 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
93 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
198 198  
199 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
95 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
200 200  
97 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
201 201  
202 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
99 +Each DS20L is shipped with a sticker with the default device EUI as below:
203 203  
204 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
205 -
206 206  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
207 207  
208 208  
... ... @@ -230,10 +230,11 @@
230 230  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
231 231  
232 232  
233 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
128 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
234 234  
130 +[[image:image-20231128133704-1.png||height="189" width="441"]]
235 235  
236 -Press the button for 5 seconds to activate the LDS12-LB.
132 +Press the button for 5 seconds to activate the DS20L.
237 237  
238 238  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239 239  
... ... @@ -240,358 +240,256 @@
240 240  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241 241  
242 242  
243 -== 2.3  ​Uplink Payload ==
139 +== 2.3 ​Uplink Payload ==
244 244  
141 +=== 2.3.1 Device Status, FPORT~=5 ===
245 245  
246 -(((
247 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
248 -)))
249 249  
250 -(((
251 -Uplink payload includes in total 11 bytes.
252 -)))
144 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
253 253  
146 +The Payload format is as below.
254 254  
255 255  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
256 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
149 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
257 257  **Size(bytes)**
258 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
259 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
260 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
261 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
262 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
263 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
264 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
265 -)))
151 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
152 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
266 266  
267 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
154 +Example parse in TTNv3
268 268  
156 +[[image:1701149922873-259.png]]
269 269  
270 -=== 2.3.1  Battery Info ===
158 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
271 271  
160 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
272 272  
273 -Check the battery voltage for LDS12-LB.
162 +(% style="color:blue" %)**Frequency Band**:
274 274  
275 -Ex1: 0x0B45 = 2885mV
164 +0x01: EU868
276 276  
277 -Ex2: 0x0B49 = 2889mV
166 +0x02: US915
278 278  
168 +0x03: IN865
279 279  
280 -=== 2.3.2  DS18B20 Temperature sensor ===
170 +0x04: AU915
281 281  
172 +0x05: KZ865
282 282  
283 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
174 +0x06: RU864
284 284  
176 +0x07: AS923
285 285  
286 -**Example**:
178 +0x08: AS923-1
287 287  
288 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
180 +0x09: AS923-2
289 289  
290 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
182 +0x0a: AS923-3
291 291  
184 +0x0b: CN470
292 292  
293 -=== 2.3.3  Distance ===
186 +0x0c: EU433
294 294  
188 +0x0d: KR920
295 295  
296 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
190 +0x0e: MA869
297 297  
192 +(% style="color:blue" %)**Sub-Band**:
298 298  
299 -**Example**:
194 +AU915 and US915:value 0x00 ~~ 0x08
300 300  
301 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
196 +CN470: value 0x0B ~~ 0x0C
302 302  
198 +Other Bands: Always 0x00
303 303  
304 -=== 2.3.4  Distance signal strength ===
200 +(% style="color:blue" %)**Battery Info**:
305 305  
202 +Check the battery voltage.
306 306  
307 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
204 +Ex1: 0x0B45 = 2885mV
308 308  
206 +Ex2: 0x0B49 = 2889mV
309 309  
310 -**Example**:
311 311  
312 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
209 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
313 313  
314 -Customers can judge whether they need to adjust the environment based on the signal strength.
315 315  
212 +==== (% style="color:red" %)**MOD~=1**(%%) ====
316 316  
317 -=== 2.3.5  Interrupt Pin ===
214 +Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
318 318  
216 +Uplink Payload totals 10 bytes.
319 319  
320 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
218 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
219 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4**
220 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
321 321  
322 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
222 +[[image:1701155076393-719.png]]
323 323  
324 -**Example:**
224 +(% style="color:blue" %)**Battery Info:**
325 325  
326 -0x00: Normal uplink packet.
226 +Check the battery voltage for DS20L
327 327  
328 -0x01: Interrupt Uplink Packet.
228 +Ex1: 0x0E10 = 3600mV
329 329  
330 330  
331 -=== 2.3.6  LiDAR temp ===
231 +(% style="color:blue" %)**MOD & Alarm & Interrupt:**
332 332  
233 +(% style="color:red" %)**MOD:**
333 333  
334 -Characterize the internal temperature value of the sensor.
235 +**Example: ** (0x60>>6) & 0x3f =1
335 335  
336 -**Example: **
337 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
338 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
237 +**0x01:**  Regularly detect distance and report.
238 +**0x02: ** Uninterrupted measurement (external power supply).
339 339  
240 +(% style="color:red" %)**Alarm:**
340 340  
341 -=== 2.3.7  Message Type ===
242 +When the detection distance exceeds the limit, the alarm flag is set to 1.
342 342  
244 +(% style="color:red" %)**Interrupt:**
343 343  
344 -(((
345 -For a normal uplink payload, the message type is always 0x01.
346 -)))
246 +Whether it is an external interrupt.
347 347  
348 -(((
349 -Valid Message Type:
350 -)))
351 351  
352 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
353 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
354 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
355 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
249 +(% style="color:blue" %)**Distance info:**
356 356  
357 -=== 2.3.8  Decode payload in The Things Network ===
251 +**Example**:
358 358  
253 +If payload is: 0708H: distance = 0708H = 1800 mm
359 359  
360 -While using TTN network, you can add the payload format to decode the payload.
361 361  
256 +(% style="color:blue" %)**Sensor State:**
362 362  
363 -[[image:1654592762713-715.png]]
258 +Ex1: 0x00: Normal collection distance
364 364  
260 +Ex2 0x0x: Distance collection is wrong
365 365  
366 -(((
367 -The payload decoder function for TTN is here:
368 -)))
369 369  
370 -(((
371 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
372 -)))
263 +(% style="color:blue" %)**Interript Count:**
373 373  
265 +If payload is:000007D0H: count = 07D0H =2000
374 374  
375 -== 2.4  Uplink Interval ==
376 376  
377 377  
378 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
269 +==== (% style="color:red" %)**MOD~=2**(%%)** ** ====
379 379  
271 +Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
380 380  
381 -== 2.5  ​Show Data in DataCake IoT Server ==
273 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
274 +|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
275 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
382 382  
277 +[[image:1701155150328-206.png]]
383 383  
384 -(((
385 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
386 -)))
279 +(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
387 387  
281 +(% style="color:red" %)**MOD:**
388 388  
389 -(((
390 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
391 -)))
283 +**Example: ** (0x60>>6) & 0x3f =1
392 392  
393 -(((
394 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
395 -)))
285 +**0x01:**  Regularly detect distance and report.
286 +**0x02: ** Uninterrupted measurement (external power supply).
396 396  
288 +(% style="color:red" %)**Alarm:**
397 397  
398 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
290 +When the detection distance exceeds the limit, the alarm flag is set to 1.
399 399  
292 +(% style="color:red" %)**Do:**
400 400  
401 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
294 +When the distance exceeds the set threshold, pull the Do pin high.
402 402  
296 +(% style="color:red" %)**Limit flag:**
403 403  
404 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
298 +Mode for setting threshold: 0~~5
405 405  
406 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
300 +0: does not use upper and lower limits
407 407  
408 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
302 +1: Use upper and lower limits
409 409  
304 +2: is less than the lower limit value
410 410  
411 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
306 +3: is greater than the lower limit value
412 412  
413 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
308 +4: is less than the upper limit
414 414  
310 +5: is greater than the upper limit
415 415  
416 -== 2.6 Datalog Feature ==
417 417  
313 +(% style="color:blue" %)**Upper limit:**
418 418  
419 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
315 +The upper limit of the threshold cannot exceed 2000mm.
420 420  
421 421  
422 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
318 +(% style="color:blue" %)**Lower limit:**
423 423  
320 +The lower limit of the threshold cannot be less than 3mm.
424 424  
425 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
426 426  
427 -* (((
428 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
429 -)))
430 -* (((
431 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
432 -)))
323 +=== 2.3.3 Decode payload in The Things Network ===
433 433  
434 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
435 435  
436 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
326 +While using TTN network, you can add the payload format to decode the payload.
437 437  
328 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
438 438  
439 -=== 2.6.2 Unix TimeStamp ===
440 440  
441 -
442 -LDS12-LB uses Unix TimeStamp format based on
443 -
444 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
445 -
446 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
447 -
448 -Below is the converter example
449 -
450 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
451 -
452 -
453 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
454 -
455 -
456 -=== 2.6.3 Set Device Time ===
457 -
458 -
459 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
460 -
461 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
462 -
463 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
464 -
465 -
466 -=== 2.6.4 Poll sensor value ===
467 -
468 -
469 -Users can poll sensor values based on timestamps. Below is the downlink command.
470 -
471 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
472 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
473 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
474 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
475 -
476 476  (((
477 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
332 +The payload decoder function for TTN is here:
478 478  )))
479 479  
480 480  (((
481 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
336 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
482 482  )))
483 483  
484 -(((
485 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
486 -)))
487 487  
488 -(((
489 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
490 -)))
340 +== 2.4 ​Show Data in DataCake IoT Server ==
491 491  
492 492  
493 -== 2.7 Frequency Plans ==
494 -
495 -
496 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
497 -
498 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
499 -
500 -
501 -== 2.8 LiDAR ToF Measurement ==
502 -
503 -=== 2.8.1 Principle of Distance Measurement ===
504 -
505 -
506 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
507 -
508 -
509 -[[image:1654831757579-263.png]]
510 -
511 -
512 -=== 2.8.2 Distance Measurement Characteristics ===
513 -
514 -
515 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
516 -
517 -[[image:1654831774373-275.png]]
518 -
519 -
520 520  (((
521 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
344 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
522 522  )))
523 523  
347 +
524 524  (((
525 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
349 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
526 526  )))
527 527  
528 528  (((
529 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
353 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
530 530  )))
531 531  
532 532  
533 -(((
534 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
535 -)))
357 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
536 536  
537 537  
538 -[[image:1654831797521-720.png]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
539 539  
540 540  
541 -(((
542 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
543 -)))
363 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
544 544  
545 -[[image:1654831810009-716.png]]
365 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
546 546  
367 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
547 547  
548 -(((
549 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 -)))
551 551  
370 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
552 552  
553 -=== 2.8.3 Notice of usage: ===
372 +[[image:image-20231129085201-1.png||height="515" width="961"]]
554 554  
555 555  
556 -Possible invalid /wrong reading for LiDAR ToF tech:
375 +== 2.5 Frequency Plans ==
557 557  
558 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
562 562  
563 -=== 2.8.4  Reflectivity of different objects ===
378 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
564 564  
380 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
565 565  
566 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
567 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
568 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
569 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
570 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
571 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
572 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
573 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
574 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
575 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
576 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
577 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
578 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
579 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
580 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
581 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
582 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
583 -Unpolished white metal surface
584 -)))|(% style="width:93px" %)130%
585 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
586 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
587 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
588 588  
589 -= 3. Configure LDS12-LB =
383 += 3. Configure DS20L =
590 590  
591 591  == 3.1 Configure Methods ==
592 592  
593 593  
594 -LDS12-LB supports below configure method:
388 +DS20L supports below configure method:
595 595  
596 596  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
597 597  
... ... @@ -613,10 +613,10 @@
613 613  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
614 614  
615 615  
616 -== 3.3 Commands special design for LDS12-LB ==
410 +== 3.3 Commands special design for DS20L ==
617 617  
618 618  
619 -These commands only valid for LDS12-LB, as below:
413 +These commands only valid for DS20L, as below:
620 620  
621 621  
622 622  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -631,7 +631,7 @@
631 631  )))
632 632  
633 633  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
634 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
428 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
635 635  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
636 636  30000
637 637  OK
... ... @@ -658,26 +658,33 @@
658 658  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
659 659  )))
660 660  * (((
661 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
455 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
456 +
457 +
458 +
662 662  )))
663 663  
664 664  === 3.3.2 Set Interrupt Mode ===
665 665  
666 666  
667 -Feature, Set Interrupt mode for PA8 of pin.
464 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
668 668  
669 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
466 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
670 670  
671 671  (% style="color:blue" %)**AT Command: AT+INTMOD**
672 672  
673 673  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
674 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
471 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
675 675  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
676 676  0
677 677  OK
678 678  the mode is 0 =Disable Interrupt
679 679  )))
680 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
477 +|(% style="width:154px" %)(((
478 +AT+INTMOD=3
479 +
480 +(default)
481 +)))|(% style="width:196px" %)(((
681 681  Set Transmit Interval
682 682  0. (Disable Interrupt),
683 683  ~1. (Trigger by rising and falling edge)
... ... @@ -695,91 +695,82 @@
695 695  
696 696  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
697 697  
499 +== 3.3.3 Set work mode ==
698 698  
699 699  
700 -=== 3.3.3 Get Firmware Version Info ===
502 +Feature: Switch working mode
701 701  
504 +(% style="color:blue" %)**AT Command: AT+MOD**
702 702  
703 -Feature: use downlink to get firmware version.
704 -
705 -(% style="color:#037691" %)**Downlink Command: 0x26**
706 -
707 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
708 -|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
709 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
710 -
711 -* Reply to the confirmation package: 26 01
712 -* Reply to non-confirmed packet: 26 00
713 -
714 -Device will send an uplink after got this downlink command. With below payload:
715 -
716 -Configures info payload:
717 -
718 718  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
719 -|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
720 -**Size(bytes)**
721 -)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
722 -|**Value**|Software Type|(((
723 -Frequency
724 -Band
725 -)))|Sub-band|(((
726 -Firmware
727 -Version
728 -)))|Sensor Type|Reserve|(((
729 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
730 -Always 0x02
507 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
508 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
509 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
510 +OK
511 +Attention:Take effect after ATZ
731 731  )))
732 732  
733 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
514 +(% style="color:blue" %)**Downlink Command:**
734 734  
735 -(% style="color:#037691" %)**Frequency Band**:
516 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
736 736  
737 -*0x01: EU868
518 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
738 738  
739 -*0x02: US915
520 +=== 3.3.4 Set threshold and threshold mode ===
740 740  
741 -*0x03: IN865
742 742  
743 -*0x04: AU915
523 +Feature, Set threshold and threshold mode
744 744  
745 -*0x05: KZ865
525 +When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
746 746  
747 -*0x06: RU864
527 +(% style="color:blue" %)**AT Command: AT+DOL**
748 748  
749 -*0x07: AS923
529 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 +|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
531 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
532 +0,0,0,0,400
533 +OK
534 +)))
535 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
750 750  
751 -*0x08: AS923-1
537 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
538 +|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
539 +|(% style="width:251px" %)1: Use upper and lower limits
540 +|(% style="width:251px" %)2: Less than the lower limit
541 +|(% style="width:251px" %)3: Greater than the lower limit
542 +|(% style="width:251px" %)4: Less than the upper limit
543 +|(% style="width:251px" %)5: Greater than the upper limit
544 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
545 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
546 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
547 +|(% style="width:251px" %)1 Person or object counting statistics
548 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
549 +0~~10000ms
752 752  
753 -*0x09: AS923-2
551 +
552 +)))
754 754  
755 -*0xa0: AS923-3
554 +(% style="color:blue" %)**Downlink Command: 0x07**
756 756  
556 +Format: Command Code (0x07) followed by 9bytes.
757 757  
758 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
558 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
759 759  
760 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
560 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
761 761  
762 -(% style="color:#037691" %)**Sensor Type**:
562 +* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,0,100,0,400
763 763  
764 -0x01: LSE01
564 +* Example 3: Downlink Payload: 0703200000064000190  **~-~-->**  AT+MOD=3,1800,100,0,400
765 765  
766 -0x02: LDDS75
566 +* Example 4: Downlink Payload: 070407080000000190  **~-~-->**  AT+MOD=4,0,100,0,400
767 767  
768 -0x03: LDDS20
568 +* Example 5: Downlink Payload: 070507080000000190  **~-~-->**  AT+MOD=5,1800,100,0,400
769 769  
770 -0x04: LLMS01
771 771  
772 -0x05: LSPH01
773 -
774 -0x06: LSNPK01
775 -
776 -0x07: LLDS12
777 -
778 -
779 779  = 4. Battery & Power Consumption =
780 780  
781 781  
782 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
574 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
783 783  
784 784  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
785 785  
... ... @@ -788,7 +788,7 @@
788 788  
789 789  
790 790  (% class="wikigeneratedid" %)
791 -User can change firmware LDS12-LB to:
583 +User can change firmware DS20L to:
792 792  
793 793  * Change Frequency band/ region.
794 794  
... ... @@ -796,7 +796,7 @@
796 796  
797 797  * Fix bugs.
798 798  
799 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
591 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
800 800  
801 801  Methods to Update Firmware:
802 802  
... ... @@ -806,12 +806,39 @@
806 806  
807 807  = 6. FAQ =
808 808  
809 -== 6.1 What is the frequency plan for LDS12-LB? ==
601 +== 6.1 What is the frequency plan for DS20L? ==
810 810  
811 811  
812 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
604 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
813 813  
814 814  
607 +== 6.2 DS20L programming line ==
608 +
609 +
610 +缺图 后续补上
611 +
612 +feature:
613 +
614 +for AT commands
615 +
616 +Update the firmware of DS20L
617 +
618 +Support interrupt mode
619 +
620 +
621 +== 6.3 LiDAR probe position ==
622 +
623 +
624 +[[image:1701155390576-216.png||height="285" width="307"]]
625 +
626 +The black oval hole in the picture is the LiDAR probe.
627 +
628 +
629 +== 6.4 Interface definition ==
630 +
631 +[[image:image-20231128151132-2.png||height="305" width="557"]]
632 +
633 +
815 815  = 7. Trouble Shooting =
816 816  
817 817  == 7.1 AT Command input doesn't work ==
... ... @@ -824,11 +824,11 @@
824 824  
825 825  
826 826  (((
827 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
646 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
828 828  )))
829 829  
830 830  (((
831 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
650 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
832 832  )))
833 833  
834 834  
... ... @@ -837,7 +837,7 @@
837 837  )))
838 838  
839 839  (((
840 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
659 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
841 841  )))
842 842  
843 843  
... ... @@ -844,7 +844,7 @@
844 844  = 8. Order Info =
845 845  
846 846  
847 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
666 +Part Number: (% style="color:blue" %)**DS20L-XXX**
848 848  
849 849  (% style="color:red" %)**XXX**(%%): **The default frequency band**
850 850  
... ... @@ -869,7 +869,7 @@
869 869  
870 870  (% style="color:#037691" %)**Package Includes**:
871 871  
872 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
691 +* DS20L LoRaWAN Smart Distance Detector x 1
873 873  
874 874  (% style="color:#037691" %)**Dimension and weight**:
875 875  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +293.9 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +70.6 KB
Content