Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- image-20230615152941-1.png
- image-20230615153004-2.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LDS12-LB-- LoRaWANLiDARToFDistanceSensor User Manual1 +DS20L -- LoRaWAN Smart Distance Detector User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023 0614153353-1.png]]2 +[[image:image-20231110085342-2.png||height="481" width="481"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,256 +18,210 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDARToFDistanceSensor ==22 +== 1.1 What is LoRaWAN Smart Distance Detector == 22 22 23 23 24 -The Dragino LDS12-LB is a(% style="color:blue" %)**LoRaWANLiDARToF(Time of Flight)DistanceSensor**(%%)forInternetofThings solution. Itis capabletomeasure the distance toan objectas closeas 10centimeters(+/- 5cm up to 6m) andas far as 12 meters(+/-1%startingat6m)!.TheLiDAR probeuseslaser induction technologyfordistancemeasurement.25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. 25 25 26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 27 28 - Itdetects thedistance betweenthemeasuredobject andthe sensor,anduploadsthevalue viawirelesstoLoRaWANIoTServer.30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.** 29 29 30 - TheLoRawirelesstechnologyused in LDS12-LB allowsdevice tosend data and reachextremelyngrangesatlowdata-rates.Itprovides ultra-long range spread spectrum communicationandhigh interferenceimmunity whilstminimizing currentconsumption.32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 31 31 32 - LDS12-LB(% style="color:blue" %)**supports BLE configure**(%%)and (%style="color:blue"%)**wirelessOTAupdate**(%%) whichmakeuser easyto use.34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 33 33 34 - LDS12-LBis powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%),it isdesigned for longterm use up to 5 years.36 +[[image:image-20231110091506-4.png||height="391" width="768"]] 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-20230614162334-2.png||height="468" width="800"]] 39 - 40 - 41 41 == 1.2 Features == 42 42 43 43 44 -* LoRaWAN 1.0.3 Class A 45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 -* Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 51 -* Support Bluetooth v5.1 and LoRaWAN remote configure 52 -* Support wireless OTA update firmware 42 +* LoRaWAN Class A protocol 43 +* LiDAR distance detector, range 3 ~~ 200cm 44 +* Periodically detect or continuously detect mode 53 53 * AT Commands to change parameters 54 -* Downlink to change configure 55 -* 8500mAh Battery for long term use 46 +* Remotely configure parameters via LoRaWAN Downlink 47 +* Alarm & Counting mode 48 +* Datalog Feature 49 +* Firmware upgradable via program port or LoRa protocol 50 +* Built-in 2400mAh battery or power by external power source 56 56 57 57 == 1.3 Specification == 58 58 59 59 60 -(% style="color:#037691" %)** CommonDCCharacteristics:**55 +(% style="color:#037691" %)**LiDAR Sensor:** 61 61 62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 -* Operating Temperature: -40 ~~ 85°C 57 +* Operation Temperature: -40 ~~ 80 °C 58 +* Operation Humidity: 0~~99.9%RH (no Dew) 59 +* Storage Temperature: -10 ~~ 45°C 60 +* Measure Range: 3cm~~200cm @ 90% reflectivity 61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 +* ToF FoV: ±9°, Total 18° 63 +* Light source: VCSEL 64 64 65 -(% style="color:#037691" %)**Probe Specification:** 66 66 67 -* Storage temperature:-20℃~~75℃ 68 -* Operating temperature : -20℃~~60℃ 69 -* Measure Distance: 70 -** 0.1m ~~ 12m @ 90% Reflectivity 71 -** 0.1m ~~ 4m @ 10% Reflectivity 72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution : 5mm 74 -* Ambient light immunity : 70klux 75 -* Enclosure rating : IP65 76 -* Light source : LED 77 -* Central wavelength : 850nm 78 -* FOV : 3.6° 79 -* Material of enclosure : ABS+PC 80 -* Wire length : 25cm 81 - 82 -(% style="color:#037691" %)**LoRa Spec:** 83 - 84 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 85 -* Max +22 dBm constant RF output vs. 86 -* RX sensitivity: down to -139 dBm. 87 -* Excellent blocking immunity 88 - 89 -(% style="color:#037691" %)**Battery:** 90 - 91 -* Li/SOCI2 un-chargeable battery 92 -* Capacity: 8500mAh 93 -* Self-Discharge: <1% / Year @ 25°C 94 -* Max continuously current: 130mA 95 -* Max boost current: 2A, 1 second 96 - 97 -(% style="color:#037691" %)**Power Consumption** 98 - 99 -* Sleep Mode: 5uA @ 3.3v 100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 - 102 - 103 -== 1.4 Applications == 104 - 105 - 106 -* Horizontal distance measurement 107 -* Parking management system 108 -* Object proximity and presence detection 109 -* Intelligent trash can management system 110 -* Robot obstacle avoidance 111 -* Automatic control 112 -* Sewer 113 - 114 - 115 115 (% style="display:none" %) 116 116 117 -== 1.5 Sleep mode and working mode == 118 118 69 += 2. Configure DS20L to connect to LoRaWAN network = 119 119 120 - (% style="color:blue"%)**DeepSleep Mode:**(%%)Sensor doesn't have any LoRaWAN activate.This mode is used fortorageand shipping to save battery life.71 +== 2.1 How it works == 121 121 122 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 123 123 74 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 124 124 125 - ==1.6 Button&LEDs==76 +(% style="display:none" %) (%%) 126 126 78 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 127 127 128 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 129 129 81 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 130 130 131 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 132 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 133 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 134 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 135 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 136 -))) 137 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 138 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 139 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 140 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 141 -))) 142 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 83 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 143 143 144 - ==1.7BLE connection==85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 145 145 146 146 147 - LDS12-LBsupportBLEremote configure.88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 148 148 149 - BLEcanbeusedto configure theparameterofsensororseetheconsoleoutputfrom sensor. BLE will beonlyactivateonbelowcase:90 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 150 150 151 -* Press button to send an uplink 152 -* Press button to active device. 153 -* Device Power on or reset. 92 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 154 154 155 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 156 156 95 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 157 157 158 -== 1.8 Pin Definitions == 159 159 160 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]98 +(% style="color:blue" %)**Register the device** 161 161 100 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 162 162 163 163 164 - ==1.9 Mechanical==103 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 165 165 105 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 166 166 167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 168 168 108 +(% style="color:blue" %)**Add APP EUI in the application** 169 169 170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 171 171 111 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 172 172 173 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 174 174 114 +(% style="color:blue" %)**Add APP KEY** 175 175 176 - (% style="color:blue"%)**Probechanical:**116 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 177 177 178 178 119 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 179 179 180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 181 181 122 +Press the button for 5 seconds to activate the LDS12-LB. 182 182 183 - =2. ConfigureLDS12-LBto connect to LoRaWAN network =124 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 184 184 185 - ==2.1 Howit works==126 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 186 186 187 187 188 - TheLDS12-LB is configured as (% style="color:#037691"%)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to joinLoRaWAN network.To connectalocal LoRaWAN network,you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA andstart to send the sensor value. The default uplink interval is 20 minutes.129 +== 2.3 Uplink Payload == 189 189 190 - (%style="display:none"%)(%%)131 +=== 2.3.1 Device Status, FPORT~=5 === 191 191 192 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 193 193 134 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 194 194 195 - Following is an example forhow to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]a LoRaWAN gateway in this example.136 +The Payload format is as below. 196 196 197 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 138 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 139 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 140 +**Size(bytes)** 141 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 142 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 198 198 199 - [[image:image-20230614162359-3.png||height="468"width="800"]](%style="display:none"%)144 +Example parse in TTNv3 200 200 146 +[[image:image-20230805103904-1.png||height="131" width="711"]] 201 201 202 -(% style="color:blue" %)**S tep1:**(%%)Createadevice in TTN withtheOTAA keysfrom LDS12-LB.148 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 203 203 204 - EachLDS12-LB isshippedwithastickerwiththedefaultdeviceEUI as below:150 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 205 205 206 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]152 +(% style="color:blue" %)**Frequency Band**: 207 207 154 +0x01: EU868 208 208 209 - Youcan enter this key in the LoRaWANServer portal. Below is TTN screen shot:156 +0x02: US915 210 210 158 +0x03: IN865 211 211 212 - (% style="color:blue"%)**Register the device**160 +0x04: AU915 213 213 214 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]162 +0x05: KZ865 215 215 164 +0x06: RU864 216 216 217 - (% style="color:blue"%)**Add APP EUI and DEV EUI**166 +0x07: AS923 218 218 219 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]168 +0x08: AS923-1 220 220 170 +0x09: AS923-2 221 221 222 - (% style="color:blue"%)**Add APP EUI in the application**172 +0x0a: AS923-3 223 223 174 +0x0b: CN470 224 224 225 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]176 +0x0c: EU433 226 226 178 +0x0d: KR920 227 227 228 - (% style="color:blue"%)**Add APP KEY**180 +0x0e: MA869 229 229 230 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]182 +(% style="color:blue" %)**Sub-Band**: 231 231 184 +AU915 and US915:value 0x00 ~~ 0x08 232 232 233 - (% style="color:blue"%)**Step 2:**(%%) Activateon LDS12-LB186 +CN470: value 0x0B ~~ 0x0C 234 234 188 +Other Bands: Always 0x00 235 235 236 - Pressthebutton for5 secondstoactivatethe LDS12-LB.190 +(% style="color:blue" %)**Battery Info**: 237 237 238 - (% style="color:green" %)**Green led**(%%) will fast blink5times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And thenstarto JOIN LoRaWAN network. (% style="color:green"%)**Green led**(%%) will solidlyturn on for 5 secondsafter joined in network.192 +Check the battery voltage. 239 239 240 - Afterjoinsuccess,it will start to uploadmessages to TTN and you can see the messages in the panel.194 +Ex1: 0x0B45 = 2885mV 241 241 196 +Ex2: 0x0B49 = 2889mV 242 242 243 -== 2.3 Uplink Payload == 244 244 199 +=== 2.3.2 Uplink Payload, FPORT~=2 === 245 245 246 -((( 247 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 248 -))) 249 249 250 250 ((( 251 -Uplink payload includes in total 11 bytes. 252 -))) 203 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 253 253 205 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 254 254 207 +Uplink Payload totals 11 bytes. 208 +))) 209 + 255 255 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 256 -|=(% style="width: 6 2.5px;background-color:#4F81BD;color:white" %)(((211 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 257 257 **Size(bytes)** 258 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**259 -|(% style="width:62.5px" %) **Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((260 -[[Temperature DS18B20>>||anchor="H 2.3.2A0DS18B20Temperaturesensor"]]261 -)))|[[Distance>>||anchor="H 2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((262 -[[Interrupt 2.3.5A0InterruptPin"]]263 -)))|[[LiDAR temp>>||anchor="H 2.3.6A0LiDARtemp"]]|(((264 -[[Message Type>>||anchor="H 2.3.7A0MessageType"]]213 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 214 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 215 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 216 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 217 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 218 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 219 +[[Message Type>>||anchor="HMessageType"]] 265 265 ))) 266 266 267 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]222 +[[image:image-20230805104104-2.png||height="136" width="754"]] 268 268 269 269 270 -=== 2.3.1Battery Info ===225 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 271 271 272 272 273 273 Check the battery voltage for LDS12-LB. ... ... @@ -277,7 +277,7 @@ 277 277 Ex2: 0x0B49 = 2889mV 278 278 279 279 280 -=== 2.3.2DS18B20 Temperature sensor ===235 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 281 281 282 282 283 283 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. ... ... @@ -290,7 +290,7 @@ 290 290 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 291 291 292 292 293 -=== 2.3.3Distance ===248 +==== (% style="color:blue" %)**Distance**(%%) ==== 294 294 295 295 296 296 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. ... ... @@ -301,7 +301,7 @@ 301 301 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 302 302 303 303 304 -=== 2.3.4Distance signal strength ===259 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 305 305 306 306 307 307 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. ... ... @@ -314,21 +314,36 @@ 314 314 Customers can judge whether they need to adjust the environment based on the signal strength. 315 315 316 316 317 - ===2.3.5 InterruptPin===272 +**1) When the sensor detects valid data:** 318 318 274 +[[image:image-20230805155335-1.png||height="145" width="724"]] 319 319 320 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 321 321 322 - Note:TheInternetPinisa separatepin inthescrewterminal. See [[pinmapping>>||anchor="H1.6A0Pinmappingandpoweron"]].277 +**2) When the sensor detects invalid data:** 323 323 279 +[[image:image-20230805155428-2.png||height="139" width="726"]] 280 + 281 + 282 +**3) When the sensor is not connected:** 283 + 284 +[[image:image-20230805155515-3.png||height="143" width="725"]] 285 + 286 + 287 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 288 + 289 + 290 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 291 + 292 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 293 + 324 324 **Example:** 325 325 326 -0x00: Normal uplink packet. 296 +If byte[0]&0x01=0x00 : Normal uplink packet. 327 327 328 -0x01: Interrupt Uplink Packet. 298 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 329 329 330 330 331 -=== 2.3.6LiDAR temp ===301 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 332 332 333 333 334 334 Characterize the internal temperature value of the sensor. ... ... @@ -338,7 +338,7 @@ 338 338 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 339 339 340 340 341 -=== 2.3.7Message Type ===311 +==== (% style="color:blue" %)**Message Type**(%%) ==== 342 342 343 343 344 344 ((( ... ... @@ -351,37 +351,115 @@ 351 351 352 352 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 353 353 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 354 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %) [[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]355 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %) [[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]324 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 325 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 356 356 357 - ===2.3.8Decodepayload inTheThings Network===327 +[[image:image-20230805150315-4.png||height="233" width="723"]] 358 358 359 359 360 - WhileusingTTN network, youcan add the payloadformattodecodethepayload.330 +=== 2.3.3 Historical measuring distance, FPORT~=3 === 361 361 362 362 363 -[[ima ge:1654592762713-715.png]]333 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 364 364 335 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 365 365 366 -((( 367 -The payload decoder function for TTN is here: 337 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 338 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 339 +**Size(bytes)** 340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 341 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 342 +Reserve(0xFF) 343 +)))|Distance|Distance signal strength|(% style="width:88px" %)((( 344 +LiDAR temp 345 +)))|(% style="width:85px" %)Unix TimeStamp 346 + 347 +**Interrupt flag & Interrupt level:** 348 + 349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 350 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 351 +**Size(bit)** 352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 353 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 354 +Interrupt flag 368 368 ))) 369 369 370 -((( 371 - LDS12-LBTTNPayloadDecoder:https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]357 +* ((( 358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 372 372 ))) 373 373 361 +For example, in the US915 band, the max payload for different DR is: 374 374 375 - ==2.4UplinkInterval==363 +**a) DR0:** max is 11 bytes so one entry of data 376 376 365 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 377 377 378 - TheLDS12-LB by defaultuplink the sensor dataevery 20 minutes.Usercan changethis interval by AT Command or LoRaWAN Downlink Command. See thislink: [[ChangeUplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]367 +**c) DR2:** total payload includes 11 entries of data 379 379 369 +**d) DR3:** total payload includes 22 entries of data. 380 380 381 - ==2.5ShowData inDataCakeIoTServer==371 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 382 382 383 383 374 +**Downlink:** 375 + 376 +0x31 64 CC 68 0C 64 CC 69 74 05 377 + 378 +[[image:image-20230805144936-2.png||height="113" width="746"]] 379 + 380 +**Uplink:** 381 + 382 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 383 + 384 + 385 +**Parsed Value:** 386 + 387 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 388 + 389 + 390 +[360,176,30,High,True,2023-08-04 02:53:00], 391 + 392 +[355,168,30,Low,False,2023-08-04 02:53:29], 393 + 394 +[245,211,30,Low,False,2023-08-04 02:54:29], 395 + 396 +[57,700,30,Low,False,2023-08-04 02:55:29], 397 + 398 +[361,164,30,Low,True,2023-08-04 02:56:00], 399 + 400 +[337,184,30,Low,False,2023-08-04 02:56:40], 401 + 402 +[20,4458,30,Low,False,2023-08-04 02:57:40], 403 + 404 +[362,173,30,Low,False,2023-08-04 02:58:53], 405 + 406 + 407 +**History read from serial port:** 408 + 409 +[[image:image-20230805145056-3.png]] 410 + 411 + 412 +=== 2.3.4 Decode payload in The Things Network === 413 + 414 + 415 +While using TTN network, you can add the payload format to decode the payload. 416 + 417 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 418 + 419 + 384 384 ((( 421 +The payload decoder function for TTN is here: 422 +))) 423 + 424 +((( 425 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 426 +))) 427 + 428 + 429 +== 2.4 Show Data in DataCake IoT Server == 430 + 431 + 432 +((( 385 385 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 386 386 ))) 387 387 ... ... @@ -413,13 +413,13 @@ 413 413 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 414 414 415 415 416 -== 2. 6Datalog Feature ==464 +== 2.5 Datalog Feature == 417 417 418 418 419 419 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 420 420 421 421 422 -=== 2. 6.1 Ways to get datalog via LoRaWAN ===470 +=== 2.5.1 Ways to get datalog via LoRaWAN === 423 423 424 424 425 425 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. ... ... @@ -431,14 +431,11 @@ 431 431 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 432 432 ))) 433 433 434 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 435 435 436 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 437 437 484 +=== 2.5.2 Unix TimeStamp === 438 438 439 -=== 2.6.2 Unix TimeStamp === 440 440 441 - 442 442 LDS12-LB uses Unix TimeStamp format based on 443 443 444 444 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] ... ... @@ -453,7 +453,7 @@ 453 453 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 454 454 455 455 456 -=== 2. 6.3 Set Device Time ===501 +=== 2.5.3 Set Device Time === 457 457 458 458 459 459 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. ... ... @@ -463,13 +463,13 @@ 463 463 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 464 464 465 465 466 -=== 2. 6.4 Poll sensor value ===511 +=== 2.5.4 Poll sensor value === 467 467 468 468 469 469 Users can poll sensor values based on timestamps. Below is the downlink command. 470 470 471 471 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 472 -|(% colspan="4" style="background-color:# d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**517 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 473 473 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 474 474 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 475 475 ... ... @@ -490,7 +490,7 @@ 490 490 ))) 491 491 492 492 493 -== 2. 7Frequency Plans ==538 +== 2.6 Frequency Plans == 494 494 495 495 496 496 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. ... ... @@ -498,96 +498,8 @@ 498 498 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 499 499 500 500 501 - ==2.8 LiDARToF Measurement==546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB 502 502 503 -=== 2.8.1 Principle of Distance Measurement === 504 - 505 - 506 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 507 - 508 - 509 -[[image:1654831757579-263.png]] 510 - 511 - 512 -=== 2.8.2 Distance Measurement Characteristics === 513 - 514 - 515 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 516 - 517 -[[image:1654831774373-275.png]] 518 - 519 - 520 -((( 521 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 522 -))) 523 - 524 -((( 525 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 526 -))) 527 - 528 -((( 529 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 530 -))) 531 - 532 - 533 -((( 534 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 535 -))) 536 - 537 - 538 -[[image:1654831797521-720.png]] 539 - 540 - 541 -((( 542 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 543 -))) 544 - 545 -[[image:1654831810009-716.png]] 546 - 547 - 548 -((( 549 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 550 -))) 551 - 552 - 553 -=== 2.8.3 Notice of usage: === 554 - 555 - 556 -Possible invalid /wrong reading for LiDAR ToF tech: 557 - 558 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 559 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 560 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 561 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 562 - 563 -=== 2.8.4 Reflectivity of different objects === 564 - 565 - 566 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 567 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity 568 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 569 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 570 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 571 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 572 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 573 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 574 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 575 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 576 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 577 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 578 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 579 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 580 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 581 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 582 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 583 -Unpolished white metal surface 584 -)))|(% style="width:93px" %)130% 585 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 586 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 587 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 588 - 589 -= 3. Configure LDS12-LB = 590 - 591 591 == 3.1 Configure Methods == 592 592 593 593 ... ... @@ -631,7 +631,7 @@ 631 631 ))) 632 632 633 633 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 634 -|=(% style="width: 156px;background-color:# D9E2F3;#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;#0070c0" %)**Function**|=(% style="background-color:#D9E2F3;#0070c0" %)**Response**591 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 635 635 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 636 636 30000 637 637 OK ... ... @@ -659,25 +659,32 @@ 659 659 ))) 660 660 * ((( 661 661 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 619 + 620 + 621 + 662 662 ))) 663 663 664 664 === 3.3.2 Set Interrupt Mode === 665 665 666 666 667 -Feature, Set Interrupt mode for PA8ofpin.627 +Feature, Set Interrupt mode for pin of GPIO_EXTI. 668 668 669 -When AT+INTMOD=0 is set, P A8is used as a digital input port.629 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port. 670 670 671 671 (% style="color:blue" %)**AT Command: AT+INTMOD** 672 672 673 673 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 674 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**634 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 675 675 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 676 676 0 677 677 OK 678 678 the mode is 0 =Disable Interrupt 679 679 ))) 680 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 640 +|(% style="width:154px" %)((( 641 +AT+INTMOD=2 642 + 643 +(default) 644 +)))|(% style="width:196px" %)((( 681 681 Set Transmit Interval 682 682 0. (Disable Interrupt), 683 683 ~1. (Trigger by rising and falling edge) ... ... @@ -696,86 +696,6 @@ 696 696 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 697 697 698 698 699 - 700 -=== 3.3.3 Get Firmware Version Info === 701 - 702 - 703 -Feature: use downlink to get firmware version. 704 - 705 -(% style="color:#037691" %)**Downlink Command: 0x26** 706 - 707 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 708 -|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)** 709 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 710 - 711 -* Reply to the confirmation package: 26 01 712 -* Reply to non-confirmed packet: 26 00 713 - 714 -Device will send an uplink after got this downlink command. With below payload: 715 - 716 -Configures info payload: 717 - 718 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 719 -|=(% style="background-color:#D9E2F3;color:#0070C0" %)((( 720 -**Size(bytes)** 721 -)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 722 -|**Value**|Software Type|((( 723 -Frequency 724 -Band 725 -)))|Sub-band|((( 726 -Firmware 727 -Version 728 -)))|Sensor Type|Reserve|((( 729 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 730 -Always 0x02 731 -))) 732 - 733 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 734 - 735 -(% style="color:#037691" %)**Frequency Band**: 736 - 737 -*0x01: EU868 738 - 739 -*0x02: US915 740 - 741 -*0x03: IN865 742 - 743 -*0x04: AU915 744 - 745 -*0x05: KZ865 746 - 747 -*0x06: RU864 748 - 749 -*0x07: AS923 750 - 751 -*0x08: AS923-1 752 - 753 -*0x09: AS923-2 754 - 755 -*0xa0: AS923-3 756 - 757 - 758 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 759 - 760 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 761 - 762 -(% style="color:#037691" %)**Sensor Type**: 763 - 764 -0x01: LSE01 765 - 766 -0x02: LDDS75 767 - 768 -0x03: LDDS20 769 - 770 -0x04: LLMS01 771 - 772 -0x05: LSPH01 773 - 774 -0x06: LSNPK01 775 - 776 -0x07: LLDS12 777 - 778 - 779 779 = 4. Battery & Power Consumption = 780 780 781 781 ... ... @@ -796,7 +796,7 @@ 796 796 797 797 * Fix bugs. 798 798 799 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/p h4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 800 800 801 801 Methods to Update Firmware: 802 802 ... ... @@ -824,11 +824,11 @@ 824 824 825 825 826 826 ((( 827 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 711 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 828 828 ))) 829 829 830 830 ((( 831 -Troubleshooting: Please avoid use of this product under such circumstance in practice. 715 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 832 832 ))) 833 833 834 834 ... ... @@ -837,7 +837,7 @@ 837 837 ))) 838 838 839 839 ((( 840 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 724 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 841 841 ))) 842 842 843 843 ... ... @@ -844,7 +844,7 @@ 844 844 = 8. Order Info = 845 845 846 846 847 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**731 +Part Number: (% style="color:blue" %)**DS20L-XXX** 848 848 849 849 (% style="color:red" %)**XXX**(%%): **The default frequency band** 850 850 ... ... @@ -869,7 +869,7 @@ 869 869 870 870 (% style="color:#037691" %)**Package Includes**: 871 871 872 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1756 +* DS20L LoRaWAN Smart Distance Detector x 1 873 873 874 874 (% style="color:#037691" %)**Dimension and weight**: 875 875
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content