Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -99,24 +99,135 @@ 99 99 * Sleep Mode: 5uA @ 3.3v 100 100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 101 102 +== 1.4 Suitable Container & Liquid == 102 102 103 103 104 -== 1.4 Applications == 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 105 105 112 +(% style="display:none" %) 106 106 107 -* Horizontal distance measurement 108 -* Parking management system 109 -* Object proximity and presence detection 110 -* Intelligent trash can management system 111 -* Robot obstacle avoidance 112 -* Automatic control 113 -* Sewer 114 +== 1.5 Install LDS12-LB == 114 114 115 115 117 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 116 116 119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 120 + 121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 122 + 123 + 124 +((( 125 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 126 +))) 127 + 128 +((( 129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 130 +))) 131 + 132 +[[image:image-20230613143052-5.png]] 133 + 134 + 135 +No polish needed if the container is shine metal surface without paint or non-metal container. 136 + 137 +[[image:image-20230613143125-6.png]] 138 + 139 + 140 +((( 141 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 142 +))) 143 + 144 +((( 145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 146 +))) 147 + 148 +((( 149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 150 +))) 151 + 152 +((( 153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 154 +))) 155 + 156 + 157 +((( 158 +(% style="color:blue" %)**LED Status:** 159 +))) 160 + 161 +* ((( 162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 163 +))) 164 + 165 +* ((( 166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 167 +))) 168 +* ((( 169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 170 +))) 171 + 172 +((( 173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 174 +))) 175 + 176 + 177 +((( 178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 179 +))) 180 + 181 + 182 +((( 183 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 184 +))) 185 + 186 +((( 187 +Prepare Eproxy AB glue. 188 +))) 189 + 190 +((( 191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 192 +))) 193 + 194 +((( 195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking. 196 +))) 197 + 198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 199 + 200 + 201 +((( 202 +(% style="color:red" %)**Note :** 203 + 204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 205 +))) 206 + 207 +((( 208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 209 +))) 210 + 211 + 212 +== 1.6 Applications == 213 + 214 + 215 +* Smart liquid control solution 216 + 217 +* Smart liquefied gas solution 218 + 219 +== 1.7 Precautions == 220 + 221 + 222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 223 + 224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 225 + 226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 227 + 117 117 (% style="display:none" %) 118 118 119 -== 1. 5Sleep mode and working mode ==230 +== 1.8 Sleep mode and working mode == 120 120 121 121 122 122 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. ... ... @@ -124,7 +124,7 @@ 124 124 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 125 125 126 126 127 -== 1. 6Button & LEDs ==238 +== 1.9 Button & LEDs == 128 128 129 129 130 130 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -143,7 +143,7 @@ 143 143 ))) 144 144 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 145 145 146 -== 1. 7BLE connection ==257 +== 1.10 BLE connection == 147 147 148 148 149 149 LDS12-LB support BLE remote configure. ... ... @@ -157,15 +157,14 @@ 157 157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 158 158 159 159 160 -== 1. 8Pin Definitions ==271 +== 1.11 Pin Definitions == 161 161 162 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]273 +[[image:image-20230523174230-1.png]] 163 163 164 164 276 +== 1.12 Mechanical == 165 165 166 -== 1.9 Mechanical == 167 167 168 - 169 169 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 170 170 171 171 ... ... @@ -250,23 +250,21 @@ 250 250 ))) 251 251 252 252 ((( 253 -Uplink payload includes in total 11bytes.363 +Uplink payload includes in total 8 bytes. 254 254 ))) 255 255 256 - 257 257 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 258 258 |=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 259 259 **Size(bytes)** 260 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1** 261 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 262 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 263 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 264 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 265 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 266 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 267 -))) 369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 371 +[[Distance>>||anchor="H2.3.2A0Distance"]] 372 +(unit: mm) 373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 268 268 269 -[[image:165483 3689380-972.png]]377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 270 270 271 271 272 272 === 2.3.1 Battery Info === ... ... @@ -279,50 +279,28 @@ 279 279 Ex2: 0x0B49 = 2889mV 280 280 281 281 282 -=== 2.3.2 D S18B20 Temperaturesensor===390 +=== 2.3.2 Distance === 283 283 284 284 285 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 393 +((( 394 +Get the distance. Flat object range 20mm - 2000mm. 395 +))) 286 286 397 +((( 398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 287 287 288 -**Example**: 400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 401 +))) 289 289 290 -If payloadis:0105H: (0105 & FC00==0),temp=0105H /10 = 26.1degree403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 291 291 292 -If payloadis:FF3FH:(FF3F& FC00==1), temp=(FF3FH-65536)/10= -19.3degrees.405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 293 293 407 +=== 2.3.3 Interrupt Pin === 294 294 295 -=== 2.3.3 Distance === 296 296 410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 297 297 298 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 299 - 300 - 301 -**Example**: 302 - 303 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 304 - 305 - 306 -=== 2.3.4 Distance signal strength === 307 - 308 - 309 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 310 - 311 - 312 -**Example**: 313 - 314 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 315 - 316 -Customers can judge whether they need to adjust the environment based on the signal strength. 317 - 318 - 319 -=== 2.3.5 Interrupt Pin === 320 - 321 - 322 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 323 - 324 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 325 - 326 326 **Example:** 327 327 328 328 0x00: Normal uplink packet. ... ... @@ -330,51 +330,44 @@ 330 330 0x01: Interrupt Uplink Packet. 331 331 332 332 333 -=== 2.3. 6LiDARtemp ===419 +=== 2.3.4 DS18B20 Temperature sensor === 334 334 335 335 336 - Characterizetheinternaltemperature valueofthesensor.422 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 337 337 338 -**Example: ** 339 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 340 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 424 +**Example**: 341 341 426 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 342 342 343 -=== 2.3.7MessageType===428 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 344 344 345 345 431 +=== 2.3.5 Sensor Flag === 432 + 433 + 346 346 ((( 347 - Fora normal uplink payload, themessagetypeis always0x01.435 +0x01: Detect Ultrasonic Sensor 348 348 ))) 349 349 350 350 ((( 351 - ValidMessage Type:439 +0x00: No Ultrasonic Sensor 352 352 ))) 353 353 354 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 355 -|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload** 356 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 357 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 358 358 443 +=== 2.3.6 Decode payload in The Things Network === 359 359 360 -=== 2.3.8 Decode payload in The Things Network === 361 361 362 - 363 363 While using TTN network, you can add the payload format to decode the payload. 364 364 448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 365 365 366 - [[image:1654592762713-715.png]]450 +The payload decoder function for TTN V3 is here: 367 367 368 - 369 369 ((( 370 -T hepayloaddecoderfunctionforTTNis here:453 +LDS12-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 371 371 ))) 372 372 373 -((( 374 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 375 -))) 376 376 377 - 378 378 == 2.4 Uplink Interval == 379 379 380 380 ... ... @@ -501,96 +501,6 @@ 501 501 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 502 502 503 503 504 -== 2.8 LiDAR ToF Measurement == 505 - 506 -=== 2.8.1 Principle of Distance Measurement === 507 - 508 - 509 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 510 - 511 - 512 -[[image:1654831757579-263.png]] 513 - 514 - 515 -=== 2.8.2 Distance Measurement Characteristics === 516 - 517 - 518 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 519 - 520 -[[image:1654831774373-275.png]] 521 - 522 - 523 -((( 524 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 525 -))) 526 - 527 -((( 528 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 529 -))) 530 - 531 -((( 532 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 533 -))) 534 - 535 - 536 -((( 537 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 538 -))) 539 - 540 - 541 -[[image:1654831797521-720.png]] 542 - 543 - 544 -((( 545 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 546 -))) 547 - 548 -[[image:1654831810009-716.png]] 549 - 550 - 551 -((( 552 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 553 -))) 554 - 555 - 556 -=== 2.8.3 Notice of usage: === 557 - 558 - 559 -Possible invalid /wrong reading for LiDAR ToF tech: 560 - 561 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 562 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 563 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 564 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 565 - 566 - 567 -=== 2.8.4 Reflectivity of different objects === 568 - 569 - 570 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 571 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity 572 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 573 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 574 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 575 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 576 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 577 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 578 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 579 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 580 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 581 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 582 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 583 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 584 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 585 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 586 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 587 -Unpolished white metal surface 588 -)))|(% style="width:93px" %)130% 589 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 590 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 591 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 592 - 593 - 594 594 = 3. Configure LDS12-LB = 595 595 596 596 == 3.1 Configure Methods ==