Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.4
edited by Xiaoling
on 2023/06/14 16:46
Change comment: There is no comment for this version
To version 82.2
edited by Xiaoling
on 2023/06/14 16:25
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,24 +99,135 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
85 +== 1.4 Suitable Container & Liquid ==
102 102  
103 103  
104 -== 1.4 Applications ==
88 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
89 +* Container shape is regular, and surface is smooth.
90 +* Container Thickness:
91 +** Pure metal material.  2~~8mm, best is 3~~5mm
92 +** Pure non metal material: <10 mm
93 +* Pure liquid without irregular deposition.
105 105  
95 +(% style="display:none" %)
106 106  
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
97 +== 1.5 Install LDS12-LB ==
114 114  
115 115  
100 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
116 116  
102 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
103 +
104 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
105 +
106 +
107 +(((
108 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
109 +)))
110 +
111 +(((
112 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
113 +)))
114 +
115 +[[image:image-20230613143052-5.png]]
116 +
117 +
118 +No polish needed if the container is shine metal surface without paint or non-metal container.
119 +
120 +[[image:image-20230613143125-6.png]]
121 +
122 +
123 +(((
124 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
125 +)))
126 +
127 +(((
128 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
129 +)))
130 +
131 +(((
132 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
133 +)))
134 +
135 +(((
136 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
137 +)))
138 +
139 +
140 +(((
141 +(% style="color:blue" %)**LED Status:**
142 +)))
143 +
144 +* (((
145 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
146 +)))
147 +
148 +* (((
149 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
150 +)))
151 +* (((
152 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
153 +)))
154 +
155 +(((
156 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
157 +)))
158 +
159 +
160 +(((
161 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
162 +)))
163 +
164 +
165 +(((
166 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
167 +)))
168 +
169 +(((
170 +Prepare Eproxy AB glue.
171 +)))
172 +
173 +(((
174 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
175 +)))
176 +
177 +(((
178 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
179 +)))
180 +
181 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
182 +
183 +
184 +(((
185 +(% style="color:red" %)**Note :**
186 +
187 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 +)))
189 +
190 +(((
191 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
192 +)))
193 +
194 +
195 +== 1.6 Applications ==
196 +
197 +
198 +* Smart liquid control solution
199 +
200 +* Smart liquefied gas solution
201 +
202 +== 1.7 Precautions ==
203 +
204 +
205 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
206 +
207 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
208 +
209 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
210 +
117 117  (% style="display:none" %)
118 118  
119 -== 1.5 Sleep mode and working mode ==
213 +== 1.8 Sleep mode and working mode ==
120 120  
121 121  
122 122  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
... ... @@ -124,7 +124,7 @@
124 124  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
125 125  
126 126  
127 -== 1.6 Button & LEDs ==
221 +== 1.9 Button & LEDs ==
128 128  
129 129  
130 130  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -143,7 +143,7 @@
143 143  )))
144 144  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
145 145  
146 -== 1.7 BLE connection ==
240 +== 1.10 BLE connection ==
147 147  
148 148  
149 149  LDS12-LB support BLE remote configure.
... ... @@ -157,15 +157,14 @@
157 157  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158 158  
159 159  
160 -== 1.8 Pin Definitions ==
254 +== 1.11 Pin Definitions ==
161 161  
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
256 +[[image:image-20230523174230-1.png]]
163 163  
164 164  
259 +== 1.12 Mechanical ==
165 165  
166 -== 1.9 Mechanical ==
167 167  
168 -
169 169  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
170 170  
171 171  
... ... @@ -177,9 +177,10 @@
177 177  
178 178  (% style="color:blue" %)**Probe Mechanical:**
179 179  
273 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
180 180  
181 181  
182 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
276 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
183 183  
184 184  
185 185  = 2. Configure LDS12-LB to connect to LoRaWAN network =
... ... @@ -250,23 +250,21 @@
250 250  )))
251 251  
252 252  (((
253 -Uplink payload includes in total 11 bytes.
347 +Uplink payload includes in total 8 bytes.
254 254  )))
255 255  
256 -
257 257  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
258 258  |=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
259 259  **Size(bytes)**
260 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
261 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
262 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
263 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
264 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
265 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
266 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
267 -)))
353 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
354 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
355 +[[Distance>>||anchor="H2.3.2A0Distance"]]
356 +(unit: mm)
357 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
358 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
359 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
268 268  
269 -[[image:1654833689380-972.png]]
361 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
270 270  
271 271  
272 272  === 2.3.1  Battery Info ===
... ... @@ -279,50 +279,28 @@
279 279  Ex2: 0x0B49 = 2889mV
280 280  
281 281  
282 -=== 2.3.2  DS18B20 Temperature sensor ===
374 +=== 2.3.2  Distance ===
283 283  
284 284  
285 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
377 +(((
378 +Get the distance. Flat object range 20mm - 2000mm.
379 +)))
286 286  
381 +(((
382 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
287 287  
288 -**Example**:
384 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
385 +)))
289 289  
290 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
387 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
291 291  
292 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
389 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
293 293  
391 +=== 2.3.3  Interrupt Pin ===
294 294  
295 -=== 2.3.3  Distance ===
296 296  
394 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
297 297  
298 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
299 -
300 -
301 -**Example**:
302 -
303 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
304 -
305 -
306 -=== 2.3.4  Distance signal strength ===
307 -
308 -
309 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
310 -
311 -
312 -**Example**:
313 -
314 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
315 -
316 -Customers can judge whether they need to adjust the environment based on the signal strength.
317 -
318 -
319 -=== 2.3.5  Interrupt Pin ===
320 -
321 -
322 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
323 -
324 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
325 -
326 326  **Example:**
327 327  
328 328  0x00: Normal uplink packet.
... ... @@ -330,51 +330,44 @@
330 330  0x01: Interrupt Uplink Packet.
331 331  
332 332  
333 -=== 2.3.6  LiDAR temp ===
403 +=== 2.3.4  DS18B20 Temperature sensor ===
334 334  
335 335  
336 -Characterize the internal temperature value of the sensor.
406 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
337 337  
338 -**Example: **
339 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
340 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
408 +**Example**:
341 341  
410 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
342 342  
343 -=== 2.3. Message Type ===
412 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
344 344  
345 345  
415 +=== 2.3.5  Sensor Flag ===
416 +
417 +
346 346  (((
347 -For a normal uplink payload, the message type is always 0x01.
419 +0x01: Detect Ultrasonic Sensor
348 348  )))
349 349  
350 350  (((
351 -Valid Message Type:
423 +0x00: No Ultrasonic Sensor
352 352  )))
353 353  
354 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
355 -|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
356 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
357 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
358 358  
427 +=== 2.3.6  Decode payload in The Things Network ===
359 359  
360 -=== 2.3.8  Decode payload in The Things Network ===
361 361  
362 -
363 363  While using TTN network, you can add the payload format to decode the payload.
364 364  
432 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
365 365  
366 -[[image:1654592762713-715.png]]
434 +The payload decoder function for TTN V3 is here:
367 367  
368 -
369 369  (((
370 -The payload decoder function for TTN is here:
437 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
371 371  )))
372 372  
373 -(((
374 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 -)))
376 376  
377 -
378 378  == 2.4  Uplink Interval ==
379 379  
380 380  
... ... @@ -501,96 +501,6 @@
501 501  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
502 502  
503 503  
504 -== 2.8 LiDAR ToF Measurement ==
505 -
506 -=== 2.8.1 Principle of Distance Measurement ===
507 -
508 -
509 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
510 -
511 -
512 -[[image:1654831757579-263.png]]
513 -
514 -
515 -=== 2.8.2 Distance Measurement Characteristics ===
516 -
517 -
518 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 -
520 -[[image:1654831774373-275.png]]
521 -
522 -
523 -(((
524 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 -)))
526 -
527 -(((
528 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 -)))
530 -
531 -(((
532 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 -)))
534 -
535 -
536 -(((
537 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 -)))
539 -
540 -
541 -[[image:1654831797521-720.png]]
542 -
543 -
544 -(((
545 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
546 -)))
547 -
548 -[[image:1654831810009-716.png]]
549 -
550 -
551 -(((
552 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
553 -)))
554 -
555 -
556 -=== 2.8.3 Notice of usage: ===
557 -
558 -
559 -Possible invalid /wrong reading for LiDAR ToF tech:
560 -
561 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565 -
566 -
567 -=== 2.8.4  Reflectivity of different objects ===
568 -
569 -
570 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
571 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
572 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
573 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
574 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
575 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
576 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
577 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
578 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
579 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
580 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
581 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
582 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
583 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
584 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
585 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
586 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
587 -Unpolished white metal surface
588 -)))|(% style="width:93px" %)130%
589 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
590 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
591 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
592 -
593 -
594 594  = 3. Configure LDS12-LB =
595 595  
596 596  == 3.1 Configure Methods ==