Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.4
edited by Xiaoling
on 2023/06/14 16:46
Change comment: There is no comment for this version
To version 70.5
edited by Xiaoling
on 2023/06/12 17:17
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DDS75-LB -- LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,12 +1,9 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230612170349-1.png||height="656" width="656"]]
3 3  
4 4  
5 5  
6 6  
7 -
8 -
9 -
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,26 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
18 +== 1.1 What is LoRaWAN Distance Detection Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
21 +The Dragino DDS75-LB is a (% style="color:blue" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:blue" %)** ultrasonic sensing technology**(%%) for (% style="color:blue" %)**distance measurement**(%%), and (% style="color:blue" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The DDS75-LB can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23 +It detects the distance(% style="color:blue" %)**  between the measured object and the sensor**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25 +The LoRa wireless technology used in SW3L-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27 +SW3L-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
29 +SW3L-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
31 +Each SW3L-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 +[[image:image-20230612170943-2.png||height="525" width="912"]]
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 39  
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
... ... @@ -44,14 +44,15 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
42 +* Distance Detection by Ultrasonic technology
43 +* Flat object range 280mm - 7500mm
44 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
45 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
50 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  == 1.3 Specification ==
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,23 +99,14 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -
103 -
104 104  == 1.4 Applications ==
105 105  
106 106  
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
84 +* Flow Sensor application
85 +* Water Control
86 +* Toilet Flow Sensor
87 +* Monitor Waste water
114 114  
115 -
116 -
117 -(% style="display:none" %)
118 -
119 119  == 1.5 Sleep mode and working mode ==
120 120  
121 121  
... ... @@ -146,8 +146,9 @@
146 146  == 1.7 BLE connection ==
147 147  
148 148  
149 -LDS12-LB support BLE remote configure.
119 +SW3L-LB support BLE remote configure.
150 150  
121 +
151 151  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152 152  
153 153  * Press button to send an uplink
... ... @@ -159,13 +159,25 @@
159 159  
160 160  == 1.8 Pin Definitions ==
161 161  
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
133 +[[image:image-20230523174230-1.png]]
163 163  
164 164  
136 +== 1.9 Flow Sensor Spec ==
165 165  
166 -== 1.9 Mechanical ==
167 167  
139 +(((
140 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
141 +|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Model**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Probe**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Diameter**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Range**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Max Pressure**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**Measure**
142 +|(% style="width:88px" %)SW3L-004|(% style="width:75px" %)DW-004|(% style="width:107px" %)G1/2" /DN15|(% style="width:101px" %)1~~30L/min|(% style="width:116px" %)≤ 2.0Mpa|(% style="width:124px" %)450 pulse = 1 L
143 +|(% style="width:88px" %)SW3L-006|(% style="width:75px" %)DW-006|(% style="width:107px" %)G3/4" /DN20|(% style="width:101px" %)1~~60L/min|(% style="width:116px" %)≤ 1.2Mpa|(% style="width:124px" %)390 pulse = 1 L
144 +|(% style="width:88px" %)SW3L-010|(% style="width:75px" %)DW-010|(% style="width:107px" %)G 1" /DN25|(% style="width:101px" %)2~~100L/min|(% style="width:116px" %)≤ 2.0Mpa|(% style="width:124px" %)64 pulse = 1 L
145 +)))
168 168  
147 +
148 +
149 +== 2.10 Mechanical ==
150 +
151 +
169 169  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
170 170  
171 171  
... ... @@ -175,19 +175,27 @@
175 175  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
176 176  
177 177  
178 -(% style="color:blue" %)**Probe Mechanical:**
161 +(% style="color:blue" %)**DW-004 Flow Sensor: diameter: G1/2” / DN15.  450 pulse = 1 L**
179 179  
163 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091350-1.png?width=722&height=385&rev=1.1||alt="image-20220519091350-1.png"]]
180 180  
181 181  
182 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
166 +(% style="color:blue" %)**006: DW-006 Flow Sensor: diameter: G3/4” / DN20.  390 pulse = 1 L**
183 183  
168 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091423-2.png?width=723&height=258&rev=1.1||alt="image-20220519091423-2.png"]]
184 184  
185 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
186 186  
171 +(% style="color:blue" %)**010: DW-010 Flow Sensor: diameter: G 1” / DN25. 64 pulse = 1 L**
172 +
173 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091423-3.png?width=724&height=448&rev=1.1||alt="image-20220519091423-3.png"]]
174 +
175 +
176 += 2. Configure SW3L-LB to connect to LoRaWAN network =
177 +
187 187  == 2.1 How it works ==
188 188  
189 189  
190 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
181 +The SW3L-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SW3L-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
191 191  
192 192  (% style="display:none" %) (%%)
193 193  
... ... @@ -198,12 +198,12 @@
198 198  
199 199  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
200 200  
201 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
192 +[[image:image-20230612171032-3.png||height="492" width="855"]](% style="display:none" %)
202 202  
203 203  
204 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
195 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SW3L-LB.
205 205  
206 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
197 +Each SW3L-LB is shipped with a sticker with the default device EUI as below:
207 207  
208 208  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
209 209  
... ... @@ -232,10 +232,10 @@
232 232  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
233 233  
234 234  
235 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
226 +(% style="color:blue" %)**Step 2:**(%%) Activate on SW3L-LB
236 236  
237 237  
238 -Press the button for 5 seconds to activate the LDS12-LB.
229 +Press the button for 5 seconds to activate the SW3L-LB.
239 239  
240 240  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
241 241  
... ... @@ -242,196 +242,355 @@
242 242  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
243 243  
244 244  
245 -== 2.3  ​Uplink Payload ==
236 +== 2.3 ​Uplink Payload ==
246 246  
238 +=== 2.3.1 Device Status, FPORT~=5 ===
247 247  
248 -(((
249 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
250 -)))
251 251  
252 -(((
253 -Uplink payload includes in total 11 bytes.
254 -)))
241 +Include device configure status. Once SW3L-LB Joined the network, it will uplink this message to the server. After that, SW3L-LB will uplink Device Status every 12 hours.
255 255  
243 +Users can use the downlink command(**0x26 01**) to ask SW3L-LB to send device configure detail, include device configure status. SW3L-LB will uplink a payload via FPort=5 to server.
256 256  
257 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
258 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
259 -**Size(bytes)**
260 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
261 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
262 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
263 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
264 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
265 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
266 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
267 -)))
245 +The Payload format is as below.
268 268  
269 -[[image:1654833689380-972.png]]
270 270  
248 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
249 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
250 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
251 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
271 271  
272 -=== 2.3.1  Battery Info ===
253 +Example parse in TTNv3
273 273  
255 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652925144491-755.png?width=732&height=139&rev=1.1||alt="1652925144491-755.png"]]
274 274  
275 -Check the battery voltage for LDS12-LB.
276 276  
258 +(% style="color:#037691" %)**Sensor Model**(%%): For SW3L-LB, this value is 0x11
259 +
260 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
261 +
262 +(% style="color:#037691" %)**Frequency Band**:
263 +
264 +*0x01: EU868
265 +
266 +*0x02: US915
267 +
268 +*0x03: IN865
269 +
270 +*0x04: AU915
271 +
272 +*0x05: KZ865
273 +
274 +*0x06: RU864
275 +
276 +*0x07: AS923
277 +
278 +*0x08: AS923-1
279 +
280 +*0x09: AS923-2
281 +
282 +*0x0a: AS923-3
283 +
284 +*0x0b: CN470
285 +
286 +*0x0c: EU433
287 +
288 +*0x0d: KR920
289 +
290 +*0x0e: MA869
291 +
292 +
293 +(% style="color:#037691" %)**Sub-Band**:
294 +
295 +AU915 and US915:value 0x00 ~~ 0x08
296 +
297 +CN470: value 0x0B ~~ 0x0C
298 +
299 +Other Bands: Always 0x00
300 +
301 +
302 +(% style="color:#037691" %)**Battery Info**:
303 +
304 +Check the battery voltage.
305 +
277 277  Ex1: 0x0B45 = 2885mV
278 278  
279 279  Ex2: 0x0B49 = 2889mV
280 280  
281 281  
282 -=== 2.3.2  DS18B20 Temperature sensor ===
311 +=== 2.3.2 Sensor Configuration, FPORT~=4 ===
283 283  
284 284  
285 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
314 +SW3L-LB will only send this command after getting the downlink command (0x26 02) from the server.
286 286  
316 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
317 +|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %) **Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:105px" %)**3**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:96px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:105px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:74px" %)**1**
318 +|**Value**|(% style="width:104px" %)TDC(unit:sec)|(% style="width:43px" %)N/A|(% style="width:91px" %)Stop Timer|(% style="width:100px" %)Alarm Timer|(% style="width:69px" %)Reserve
287 287  
288 -**Example**:
320 +* (% style="color:#037691" %)**TDC: (default: 0x0004B0)**
289 289  
290 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
322 +Uplink interval for the total pulse count, default value is 0x0004B0 which is 1200 seconds = 20 minutes.
291 291  
292 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
293 293  
325 +* (% style="color:#037691" %)**STOP Duration & Alarm Timer**
294 294  
295 -=== 2.3.3  Distance ===
327 +Shows the configure value of [[Alarm for continuously water flow>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]
296 296  
329 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095747-2.png?width=723&height=113&rev=1.1||alt="image-20220519095747-2.png"]]
297 297  
298 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
299 299  
332 +=== 2.3.3 Water Flow Value, Uplink FPORT~=2 ===
300 300  
301 -**Example**:
302 302  
303 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
335 +(((
336 +SW3L-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And SW3L-LB will:
337 +)))
304 304  
339 +(((
340 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
341 +)))
305 305  
306 -=== 2.3.4  Distance signal strength ===
343 +(((
344 +Uplink Payload totals 11 bytes.
345 +)))
307 307  
347 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
348 +|=(% colspan="6" style="width: 510px;background-color:#D9E2F3;color:#0070C0" %)**Water Flow Value,  FPORT=2**
349 +|(% style="width:60px" %)**Size(bytes)**|(% style="width:130px" %)**1**|(% style="width:130px" %)**4**|(% style="width:30px" %)**1**|(% style="width:50px" %)**1**|(% style="width:80px" %)**4**
350 +|(% style="width:110px" %)**Value**|(% style="width:81px" %)Calculate Flag & [[Alarm>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]|(% style="width:95px" %)(((
351 +Total pulse Or Last Pulse
352 +)))|(% style="width:55px" %)MOD|(% style="width:115px" %)Reserve(0x01)|(% style="width:129px" %)[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
308 308  
309 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
354 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:470px" %)
355 +|=(% colspan="4" style="width: 470px;background-color:#D9E2F3;color:#0070C0" %)**Status & Alarm field**
356 +|(% style="width:60px" %)**Size(bit)**|(% style="width:80px" %)**6**|(% style="width:310px" %)**1**|(% style="width:20px" %)**1**
357 +|(% style="width:88px" %)**Value**|(% style="width:117px" %)Calculate Flag|(% style="width:221px" %)Alarm: 0: No Alarm; 1: Alarm|(% style="width:64px" %)N/A
310 310  
359 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-3.png?width=736&height=284&rev=1.1||alt="image-20220519095946-3.png"]]
311 311  
312 -**Example**:
313 313  
314 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
362 +* (((
363 +(% style="color:#037691" %)**Calculate Flag**
364 +)))
315 315  
316 -Customers can judge whether they need to adjust the environment based on the signal strength.
366 +(((
367 +The calculate flag is a user defined field, IoT server can use this flag to handle different meters with different pulse factors. For example, if there are 100 Flow Sensors, meters 1 ~~50 are 1 liter/pulse and meters 51 ~~ 100 has 1.5 liter/pulse.
368 +)))
317 317  
370 +(((
371 +**Example: in the default payload:**
372 +)))
318 318  
319 -=== 2.3.5  Interrupt Pin ===
374 +* (((
375 +calculate flag=0: for SW3L-004 Flow Sensor: 450 pulse = 1 L
376 +)))
377 +* (((
378 +calculate flag=1: for SW3L-006 Flow Sensor: 390 pulse = 1 L
379 +)))
380 +* (((
381 +calculate flag=2: for SW3L-010 Flow Sensor: 64 pulse = 1 L
382 +)))
320 320  
384 +(((
385 +Default value: 0. 
386 +)))
321 321  
322 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
388 +(((
389 +Range (6 bits): (b)000000 ~~ (b) 111111
323 323  
324 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
391 +If user use with a meter for example is 0.02L/pulse. To proper decode the correct value in server,
325 325  
326 -**Example:**
393 +1) User can set the Calculate Flag of this sensor to 3.
327 327  
328 -0x00: Normal uplink packet.
395 +2) In server side, when a sensor data arrive, the decoder will check the value of Calculate Flag, It the value is 3, the total volume = 0.02 x Pulse Count.
396 +)))
329 329  
330 -0x01: Interrupt Uplink Packet.
398 +(((
399 +(% style="color:red" %)**NOTE: User need to set Calculate Flag to proper value before use Flow Sensor. Downlink or AT Command see: **(%%)Refer: [[Set Calculate Flag>>||anchor="H3.3.6Setthecalculateflag"]]
400 +)))
331 331  
402 +* (((
403 +(% style="color:#037691" %)**Alarm**
404 +)))
332 332  
333 -=== 2.3.6  LiDAR temp ===
406 +(((
407 +See [[Alarm for continuously water flow>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]
408 +)))
334 334  
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-4.png?width=724&height=65&rev=1.1||alt="image-20220519095946-4.png"]]
335 335  
336 -Characterize the internal temperature value of the sensor.
337 337  
338 -**Example: **
339 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
340 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
413 +* (((
414 +(% style="color:#037691" %)**Total pulse**
415 +)))
341 341  
417 +(((
418 +Total pulse/counting since factory
419 +)))
342 342  
343 -=== 2.3.7  Message Type ===
421 +(((
422 +Range (4 Bytes) : 0x00000000~~ 0xFFFFFFFF .
423 +)))
344 344  
425 +* (((
426 +(% style="color:#037691" %)**Last Pulse**
427 +)))
345 345  
346 346  (((
347 -For a normal uplink payload, the message type is always 0x01.
430 +Total pulse since last FPORT=2 uplink. (Default 20 minutes)
348 348  )))
349 349  
350 350  (((
351 -Valid Message Type:
434 +Range (4 Bytes) : 0x00000000~~ 0xFFFFFFFF .
352 352  )))
353 353  
354 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
355 -|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
356 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
357 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
437 +* (((
438 +(% style="color:#037691" %)**MOD: Default =0**
439 +)))
358 358  
441 +(((
442 +MOD=0 ~-~-> Uplink Total Pulse since factory
443 +)))
359 359  
360 -=== 2.3.8  Decode payload in The Things Network ===
445 +(((
446 +MOD=1 ~-~-> Uplink total pulse since last FPORT=2 uplink.
447 +)))
361 361  
449 +* (((
450 +(% style="color:#037691" %)**Water Flow Value**
451 +)))
362 362  
363 -While using TTN network, you can add the payload format to decode the payload.
453 +(((
454 +**Total Water Flow Volume = (Calculate Flag) x (Total Pulse)=9597/450=21.3L**
455 +)))
364 364  
457 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-5.png?width=727&height=50&rev=1.1||alt="image-20220519095946-5.png"]]
365 365  
366 -[[image:1654592762713-715.png]]
367 367  
460 +(((
461 +**Total Water Flow for TDC timer = (Calculate Flag) x (Last Pulse)=79/450=0.2L**
462 +)))
368 368  
464 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-6.png?width=733&height=43&rev=1.1||alt="image-20220519095946-6.png"]] ** **
465 +
466 +
467 +=== 2.3.4 Historical Water Flow Status, FPORT~=3 ===
468 +
469 +
369 369  (((
370 -The payload decoder function for TTN is here:
471 +SW3L-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5DatalogFeature"]].
371 371  )))
372 372  
373 373  (((
374 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
475 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status.
375 375  )))
376 376  
478 +* (((
479 +Each data entry is 11 bytes and has the same structure as [[real time water flow status>>||anchor="H2.3.3A0WaterFlowValue2CUplinkFPORT3D2"]], to save airtime and battery, SW3L will send max bytes according to the current DR and Frequency bands.
480 +)))
377 377  
378 -== 2.4  Uplink Interval ==
482 +(((
483 +For example, in the US915 band, the max payload for different DR is:
484 +)))
379 379  
486 +(((
487 +(% style="color:blue" %)**a) DR0:**(%%) max is 11 bytes so one entry of data
488 +)))
380 380  
381 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
490 +(((
491 +(% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
492 +)))
382 382  
494 +(((
495 +(% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
496 +)))
383 383  
384 -== 2.5  ​Show Data in DataCake IoT Server ==
498 +(((
499 +(% style="color:blue" %)**d) DR3:**(%%) total payload includes 22 entries of data.
500 +)))
385 385  
502 +(((
503 +If SW3L-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
504 +)))
386 386  
387 387  (((
388 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
507 +(% style="color:#037691" %)**Downlink:**
389 389  )))
390 390  
510 +(((
511 +0x31 62 46 B1 F0 62 46 B3 94 07
512 +)))
391 391  
514 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652926690850-712.png?width=726&height=115&rev=1.1||alt="1652926690850-712.png"]]
515 +
516 +
392 392  (((
393 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
518 +(% style="color:#037691" %)**Uplink:**
394 394  )))
395 395  
396 396  (((
397 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
522 +00 00 01 00 00 00 00 62 46 B2 26 00 00 01 00 00 00 00 62 46 B2 5D 00 00 01 00 00 00 00 62 46 B2 99 00 00 01 00 00 00 00 62 46 B2 D5 00 00 01 00 00 01 15 62 46 B3 11 00 00 01 00 00 01 1F 62 46 B3 7E
398 398  )))
399 399  
525 +(((
526 +(% style="color:#037691" %)**Parsed Value:**
527 +)))
400 400  
401 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
529 +(((
530 +[Alarm, Calculate Flag, MOD, Total pulse or Last Pulse,** **Water Flow Value, TIME]
531 +)))
402 402  
403 403  
404 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
534 +(((
535 +[FALSE,0,0,0,0.0,2022-04-01 08:04:54],
536 +)))
405 405  
538 +(((
539 +[FALSE,0,0,0,0.0,2022-04-01 08:05:49],
540 +)))
406 406  
407 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
542 +(((
543 +[FALSE,0,0,0,0.0,2022-04-01 08:06:49],
544 +)))
408 408  
409 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
546 +(((
547 +[FALSE,0,0,0,0.0,2022-04-01 08:07:49],
548 +)))
410 410  
411 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
550 +(((
551 +[FALSE,0,0,277,0.6,2022-04-01 08:08:49],
552 +)))
412 412  
554 +(((
555 +[FALSE,0,0,287,0.6,2022-04-01 08:10:38],
556 +)))
413 413  
414 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
558 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652926777796-267.png?width=724&height=279&rev=1.1||alt="1652926777796-267.png"]]
415 415  
416 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
417 417  
561 +== 2.4 Payload Decoder file ==
418 418  
419 -== 2.6 Datalog Feature ==
420 420  
564 +In TTN, use can add a custom payload so it shows friendly reading
421 421  
422 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
566 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
423 423  
424 424  
425 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
569 +== 2.5 Datalog Feature ==
426 426  
427 427  
428 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
572 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, SW3L-LB will store the reading for future retrieving purposes.
429 429  
574 +
575 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
576 +
577 +
578 +Set PNACKMD=1, SW3L-LB will wait for ACK for every uplink, when there is no LoRaWAN network,SW3L-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
579 +
430 430  * (((
431 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
581 +a) SW3L-LB will do an ACK check for data records sending to make sure every data arrive server.
432 432  )))
433 433  * (((
434 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
584 +b) SW3L-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but SW3L-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if SW3L-LB gets a ACK, SW3L-LB will consider there is a network connection and resend all NONE-ACK messages.
435 435  )))
436 436  
437 437  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -439,10 +439,10 @@
439 439  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
440 440  
441 441  
442 -=== 2.6.2 Unix TimeStamp ===
592 +=== 2.5.2 Unix TimeStamp ===
443 443  
444 444  
445 -LDS12-LB uses Unix TimeStamp format based on
595 +SW3L-LB uses Unix TimeStamp format based on
446 446  
447 447  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
448 448  
... ... @@ -456,17 +456,17 @@
456 456  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
457 457  
458 458  
459 -=== 2.6.3 Set Device Time ===
609 +=== 2.5.3 Set Device Time ===
460 460  
461 461  
462 462  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
463 463  
464 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
614 +Once SW3L-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to SW3L-LB. If SW3L-LB fails to get the time from the server, SW3L-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465 465  
466 466  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
467 467  
468 468  
469 -=== 2.6.4 Poll sensor value ===
619 +=== 2.5.4 Poll sensor value ===
470 470  
471 471  
472 472  Users can poll sensor values based on timestamps. Below is the downlink command.
... ... @@ -489,189 +489,253 @@
489 489  )))
490 490  
491 491  (((
492 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
642 +Uplink Internal =5s,means SW3L-LB will send one packet every 5s. range 5~~255s.
493 493  )))
494 494  
495 495  
496 -== 2.7 Frequency Plans ==
646 +== 2.6 Frequency Plans ==
497 497  
498 498  
499 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
649 +The SW3L-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
500 500  
501 501  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
502 502  
503 503  
504 -== 2.8 LiDAR ToF Measurement ==
654 += 3. Configure SW3L-LB =
505 505  
506 -=== 2.8.1 Principle of Distance Measurement ===
656 +== 3.1 Configure Methods ==
507 507  
508 508  
509 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
659 +SW3L-LB supports below configure method:
510 510  
661 +* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
511 511  
512 -[[image:1654831757579-263.png]]
663 +* AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
513 513  
665 +* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
514 514  
515 -=== 2.8.2 Distance Measurement Characteristics ===
667 +== 3.2 General Commands ==
516 516  
517 517  
518 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
670 +These commands are to configure:
519 519  
520 -[[image:1654831774373-275.png]]
672 +* General system settings like: uplink interval.
521 521  
674 +* LoRaWAN protocol & radio related command.
522 522  
523 -(((
524 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 -)))
676 +They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
526 526  
527 -(((
528 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 -)))
678 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
530 530  
531 -(((
532 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 -)))
534 534  
681 +== 3.3 Commands special design for SW3L-LB ==
535 535  
536 -(((
537 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 -)))
539 539  
684 +These commands only valid for SW3L-LB, as below:
540 540  
541 -[[image:1654831797521-720.png]]
542 542  
687 +=== 3.3.1 Set Transmit Interval Time ===
543 543  
689 +
544 544  (((
545 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
691 +Feature: Change LoRaWAN End Node Transmit Interval.
546 546  )))
547 547  
548 -[[image:1654831810009-716.png]]
694 +(((
695 +(% style="color:blue" %)**AT Command: AT+TDC**
696 +)))
549 549  
698 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
699 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
700 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
701 +30000
702 +OK
703 +the interval is 30000ms = 30s
704 +)))
705 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
706 +OK
707 +Set transmit interval to 60000ms = 60 seconds
708 +)))
550 550  
551 551  (((
552 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
711 +(% style="color:blue" %)**Downlink Command: 0x01**
553 553  )))
554 554  
714 +(((
715 +Format: Command Code (0x01) followed by 3 bytes time value.
716 +)))
555 555  
556 -=== 2.8.3 Notice of usage: ===
718 +(((
719 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
720 +)))
557 557  
722 +* (((
723 +Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
724 +)))
725 +* (((
726 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
727 +)))
558 558  
559 -Possible invalid /wrong reading for LiDAR ToF tech:
729 +=== 3.3.2 Quit AT Command ===
560 560  
561 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565 565  
732 +Feature: Quit AT Command mode, so user needs to input the password again before using AT Commands.
566 566  
567 -=== 2.8.4  Reflectivity of different objects ===
734 +(% style="color:blue" %)**AT Command: AT+DISAT**
568 568  
736 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:452px" %)
737 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 198px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 99px;background-color:#D9E2F3;color:#0070C0" %)**Response**
738 +|(% style="width:155px" %)AT+DISAT|(% style="width:198px" %)Quit AT Commands mode|(% style="width:96px" %)OK
569 569  
570 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
571 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
572 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
573 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
574 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
575 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
576 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
577 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
578 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
579 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
580 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
581 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
582 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
583 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
584 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
585 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
586 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
587 -Unpolished white metal surface
588 -)))|(% style="width:93px" %)130%
589 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
590 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
591 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740 +(% style="color:blue" %)**Downlink Command:**
592 592  
742 +No downlink command for this feature.
593 593  
594 -= 3. Configure LDS12-LB =
595 595  
596 -== 3.1 Configure Methods ==
745 +=== 3.3.3 Get Device Status ===
597 597  
598 598  
599 -LDS12-LB supports below configure method:
748 +Send a LoRaWAN downlink to ask device send Alarm settings.
600 600  
601 -* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
750 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
602 602  
603 -* AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
752 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
604 604  
605 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
606 606  
607 -== 3.2 General Commands ==
755 +=== 3.3.4 Alarm for continuously water flow ===
608 608  
609 609  
610 -These commands are to configure:
758 +(((
759 +This feature is to monitor and send Alarm for continuously water flow.
760 +)))
611 611  
612 -* General system settings like: uplink interval.
762 +(((
763 +Example case is for Toilet water monitoring, if some one push toilet button, the toilet will have water flow. If the toilet button has broken and can't returned to original state, the water flow will keep for hours or days which cause huge waste for water.
764 +)))
613 613  
614 -* LoRaWAN protocol & radio related command.
766 +(((
767 +To monitor this faulty and send alarm, there are two settings:
768 +)))
615 615  
616 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
770 +* (((
771 +(% style="color:#4f81bd" %)**Stop Duration: Unit: Second**
772 +)))
617 617  
618 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
774 +(((
775 +Default: 15s, If SW3L-LB didn't see any water flow in 15s, SW3L-LB will consider stop of water flow event.
776 +)))
619 619  
778 +* (((
779 +(% style="color:#4f81bd" %)**Alarm Timer: Units: Minute; Default 0 minutes (means Alarm disable)**
780 +)))
620 620  
621 -== 3.3 Commands special design for LDS12-LB ==
782 +(((
783 +**Example:** 3 minutes, if SW3L-LB detect a start of water flow event and didn't detect a stop event within Alarm timer, SW3L-LB will send an Alarm to indicate a water flow abnormal alarm.
784 +)))
622 622  
786 +(((
787 +So for example, If we set stop duration=15s and Alarm Timer=3minutes. If the toilet water flow continuously for more than 3 minutes, Sensor will send an alarm (in Confirmed MODE) to platform.
788 +)))
623 623  
624 -These commands only valid for LDS12-LB, as below:
790 +(((
791 +(% style="color:red" %)**Note:** **After this alarm is send, sensor will consider a stop of water flow and count for another new event. So if water flow waste last for 1 hour, Sensor will keep sending alarm every 3 minutes.**
792 +)))
625 625  
794 +(((
795 +(% style="color:#4f81bd" %)**AT Command**(%%) to configure:
796 +)))
626 626  
627 -=== 3.3.1 Set Transmit Interval Time ===
798 +* (((
799 +AT+PTRIG=15,3  ~-~-> Set Stop duration: 15s, Alarm Timer: 3 minutes.
800 +)))
628 628  
802 +* (((
803 +AT+ PTRIG=15,0  ~-~-> Default Value, disable water waste Alarm.
804 +)))
629 629  
630 630  (((
631 -Feature: Change LoRaWAN End Node Transmit Interval.
807 +(% style="color:#4f81bd" %)**Downlink Command**(%%) to configure: 
632 632  )))
633 633  
634 634  (((
635 -(% style="color:blue" %)**AT Command: AT+TDC**
811 +Command: **0xAA aa bb cc**
636 636  )))
637 637  
638 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
640 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
641 -30000
642 -OK
643 -the interval is 30000ms = 30s
814 +(((
815 +AA: Command Type Code
644 644  )))
645 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
646 -OK
647 -Set transmit interval to 60000ms = 60 seconds
817 +
818 +(((
819 +aa: Stop duration
648 648  )))
649 649  
650 650  (((
651 -(% style="color:blue" %)**Downlink Command: 0x01**
823 +bb cc: Alarm Timer
652 652  )))
653 653  
654 654  (((
655 -Format: Command Code (0x01) followed by 3 bytes time value.
827 +If user send 0xAA 0F 00 03: equal to AT+PTRIG=15,3
656 656  )))
657 657  
830 +
831 +=== 3.3.5 Clear Flash Record ===
832 +
833 +
834 +Feature: Clear flash storage for data log feature.
835 +
836 +(% style="color:blue" %)**AT Command: AT+CLRDTA**
837 +
838 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
839 +|=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 169px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Response**
840 +|(% style="width:157px" %)AT+CLRDTA|(% style="width:169px" %)Clear flash storage for data log feature.|Clear all stored sensor data… OK
841 +
658 658  (((
659 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
843 +(% style="color:blue" %)**Downlink Command:**
660 660  )))
661 661  
662 -* (((
663 -Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
846 +(((
847 +* **Example**: 0xA301  ~/~/  Same as AT+CLRDTA
664 664  )))
665 -* (((
666 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
667 667  
668 668  
669 -
670 -)))
671 671  
672 -=== 3.3.2 Set Interrupt Mode ===
852 +=== 3.3.6 Set the calculate flag ===
673 673  
674 674  
855 +Feature: Set the calculate flag
856 +
857 +(% style="color:blue" %)**AT Command: AT+CALCFLAG**
858 +
859 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:461px" %)
860 +|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 193px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**Response**
861 +|(% style="width:158px" %)AT+CALCFLAG =1|(% style="width:192px" %)Set the calculate flag to 1.|(% style="width:109px" %)OK
862 +|(% style="width:158px" %)AT+CALCFLAG =2|(% style="width:192px" %)Set the calculate flag to 2.|(% style="width:109px" %)OK
863 +
864 +(% style="color:blue" %)**Downlink Command:**
865 +
866 +* **Example**: 0XA501  ~/~/  Same as AT+CALCFLAG =1
867 +
868 +=== 3.3.7 Set count number ===
869 +
870 +
871 +Feature: Manually set the count number
872 +
873 +(% style="color:blue" %)**AT Command: AT+SETCNT**
874 +
875 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479px" %)
876 +|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 96px;background-color:#D9E2F3;color:#0070C0" %)**Response**
877 +|(% style="width:160px" %)AT+ SETCNT =0|(% style="width:221px" %)Set the count number to 0.|(% style="width:95px" %)OK
878 +|(% style="width:160px" %)AT+ SETCNT =100|(% style="width:221px" %)Set the count number to 100.|(% style="width:95px" %)OK
879 +
880 +(% style="color:blue" %)**Downlink Command:**
881 +
882 +* **Example**: 0xA6000001  ~/~/  Same as AT+ SETCNT =1
883 +
884 +* **Example**: 0xA6000064  ~/~/  Same as AT+ SETCNT =100
885 +
886 +=== 3.3.8 Set Interrupt Mode ===
887 +
888 +
675 675  Feature, Set Interrupt mode for PA8 of pin.
676 676  
677 677  When AT+INTMOD=0 is set, PA8 is used as a digital input port.
... ... @@ -703,10 +703,29 @@
703 703  
704 704  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
705 705  
920 +=== 3.3.9 Set work mode ===
921 +
922 +
923 +Feature: Manually set the work mode
924 +
925 +
926 +(% style="color:blue" %)**AT Command: AT+MOD**
927 +
928 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
929 +|=(% style="width: 162px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 193px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 108px;background-color:#D9E2F3;color:#0070C0" %)**Response**
930 +|(% style="width:162px" %)AT+MOD=0|(% style="width:191px" %)Set the work mode to 0.|(% style="width:106px" %)OK
931 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the work mode to 1|(% style="width:106px" %)OK
932 +
933 +(% style="color:blue" %)**Downlink Command:**
934 +
935 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
936 +
937 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
938 +
706 706  = 4. Battery & Power Consumption =
707 707  
708 708  
709 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
942 +SW3L-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
710 710  
711 711  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
712 712  
... ... @@ -715,7 +715,7 @@
715 715  
716 716  
717 717  (% class="wikigeneratedid" %)
718 -User can change firmware LDS12-LB to:
951 +User can change firmware SW3L-LB to:
719 719  
720 720  * Change Frequency band/ region.
721 721  
... ... @@ -723,80 +723,82 @@
723 723  
724 724  * Fix bugs.
725 725  
726 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
959 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
727 727  
728 728  Methods to Update Firmware:
729 729  
730 -* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
963 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
731 731  
732 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
965 +* Update through UART TTL interface. **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
733 733  
734 734  = 6. FAQ =
735 735  
736 -== 6.1 What is the frequency plan for LDS12-LB? ==
969 +== 6.1  AT Commands input doesn't work ==
737 737  
738 738  
739 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
972 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
740 740  
741 741  
742 -= 7. Trouble Shooting =
975 += 7. Order Info =
743 743  
744 -== 7.1 AT Command input doesn't work ==
745 745  
978 +Part Number: (% style="color:blue" %)**SW3L-LB-XXX-YYY**
746 746  
747 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
980 +(% style="color:red" %)**XXX**(%%): The default frequency band
748 748  
982 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
749 749  
750 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
984 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
751 751  
986 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
752 752  
988 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
989 +
990 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
991 +
992 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
993 +
994 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
995 +
996 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
997 +
753 753  (((
754 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
999 +(% style="color:blue" %)**YYY**(%%): Flow Sensor Model:
755 755  )))
756 756  
757 757  (((
758 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
1003 + **004:** DW-004 Flow Sensor: diameter: G1/2” / DN15.  450 pulse = 1 L
759 759  )))
760 760  
761 -
762 762  (((
763 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1007 + **006:** DW-006 Flow Sensor: diameter: G3/4” / DN20. 390 pulse = 1 L
764 764  )))
765 765  
766 766  (((
767 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1011 + **010:** DW-010 Flow Sensor: diameter: G 1” / DN25. 64 pulse = 1 L
768 768  )))
769 769  
1014 +* (((
1015 +calculate flag=0: for SW3L-004 Flow Sensor: 450 pulse = 1 L
1016 +)))
770 770  
771 -= 8. Order Info =
1018 +* (((
1019 +calculate flag=1: for SW3L-006 Flow Sensor: 390 pulse = 1 L
1020 +)))
772 772  
1022 +* (((
1023 +calculate flag=2: for SW3L-010 Flow Sensor: 64  pulse = 1 L
773 773  
774 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
775 775  
776 -(% style="color:red" %)**XXX**(%%): **The default frequency band**
1026 +
1027 +)))
777 777  
778 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1029 += 8. ​Packing Info =
779 779  
780 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
781 781  
782 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
783 -
784 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
785 -
786 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
787 -
788 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
789 -
790 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
791 -
792 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
793 -
794 -= 9. ​Packing Info =
795 -
796 -
797 797  (% style="color:#037691" %)**Package Includes**:
798 798  
799 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
1034 +* SW3L-LB LoRaWAN Flow Sensor
800 800  
801 801  (% style="color:#037691" %)**Dimension and weight**:
802 802  
... ... @@ -808,7 +808,7 @@
808 808  
809 809  * Weight / pcs : g
810 810  
811 -= 10. Support =
1046 += 9. Support =
812 812  
813 813  
814 814  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
image-20230613100900-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -184.0 KB
Content
image-20230613102426-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -89.3 KB
Content
image-20230613102459-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -89.3 KB
Content
image-20230613133647-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -213.6 KB
Content
image-20230613133716-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -165.8 KB
Content
image-20230613140115-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.1 KB
Content
image-20230613140140-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.1 KB
Content
image-20230613143052-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -21.8 KB
Content
image-20230613143125-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.7 KB
Content
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content