Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.4
edited by Xiaoling
on 2023/06/14 16:46
Change comment: There is no comment for this version
To version 120.3
edited by Xiaoling
on 2023/11/28 14:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,176 +18,66 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
53 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
55 +* Operation Temperature: -40 ~~ 80 °C
56 +* Operation Humidity: 0~~99.9%RH (no Dew)
57 +* Storage Temperature: -10 ~~ 45°C
58 +* Measure Range: 3cm~~200cm @ 90% reflectivity
59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 +* ToF FoV: ±9°, Total 18°
61 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
63 +== 1.4 Power Consumption ==
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 81  
82 -(% style="color:#037691" %)**LoRa Spec:**
66 +(% style="color:#037691" %)**Battery Power Mode:**
83 83  
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
68 +* Idle: 0.003 mA @ 3.3v
69 +* Max : 360 mA
88 88  
89 -(% style="color:#037691" %)**Battery:**
71 +(% style="color:#037691" %)**Continuously mode**:
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
73 +* Idle: 21 mA @ 3.3v
74 +* Max : 360 mA
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
76 += 2. Configure DS20L to connect to LoRaWAN network =
98 98  
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 -
102 -
103 -
104 -== 1.4 Applications ==
105 -
106 -
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
114 -
115 -
116 -
117 -(% style="display:none" %)
118 -
119 -== 1.5 Sleep mode and working mode ==
120 -
121 -
122 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
123 -
124 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
125 -
126 -
127 -== 1.6 Button & LEDs ==
128 -
129 -
130 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
131 -
132 -
133 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
134 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
135 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
136 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
137 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
138 -)))
139 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
140 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
141 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
142 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
143 -)))
144 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
145 -
146 -== 1.7 BLE connection ==
147 -
148 -
149 -LDS12-LB support BLE remote configure.
150 -
151 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152 -
153 -* Press button to send an uplink
154 -* Press button to active device.
155 -* Device Power on or reset.
156 -
157 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158 -
159 -
160 -== 1.8 Pin Definitions ==
161 -
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
163 -
164 -
165 -
166 -== 1.9 Mechanical ==
167 -
168 -
169 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
170 -
171 -
172 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
173 -
174 -
175 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
176 -
177 -
178 -(% style="color:blue" %)**Probe Mechanical:**
179 -
180 -
181 -
182 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
183 -
184 -
185 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
186 -
187 187  == 2.1 How it works ==
188 188  
189 189  
190 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
191 191  
192 192  (% style="display:none" %) (%%)
193 193  
... ... @@ -196,15 +196,14 @@
196 196  
197 197  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
198 198  
199 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
200 200  
201 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
202 202  
94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
203 203  
204 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
96 +Each DS20L is shipped with a sticker with the default device EUI as below:
205 205  
206 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
207 -
208 208  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
209 209  
210 210  
... ... @@ -232,10 +232,11 @@
232 232  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
233 233  
234 234  
235 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
236 236  
127 +[[image:image-20231128133704-1.png||height="189" width="441"]]
237 237  
238 -Press the button for 5 seconds to activate the LDS12-LB.
129 +Press the button for 5 seconds to activate the DS20L.
239 239  
240 240  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
241 241  
... ... @@ -242,361 +242,351 @@
242 242  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
243 243  
244 244  
245 -== 2.3  ​Uplink Payload ==
136 +== 2.3 ​Uplink Payload ==
246 246  
138 +=== 2.3.1 Device Status, FPORT~=5 ===
247 247  
248 -(((
249 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
250 -)))
251 251  
252 -(((
253 -Uplink payload includes in total 11 bytes.
254 -)))
141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
255 255  
143 +The Payload format is as below.
256 256  
257 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
258 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
145 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
146 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
259 259  **Size(bytes)**
260 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
261 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
262 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
263 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
264 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
265 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
266 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
267 -)))
148 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
149 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
268 268  
269 -[[image:1654833689380-972.png]]
151 +Example parse in TTNv3
270 270  
153 +[[image:1701149922873-259.png]]
271 271  
272 -=== 2.3.1  Battery Info ===
155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
273 273  
157 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
274 274  
275 -Check the battery voltage for LDS12-LB.
159 +(% style="color:blue" %)**Frequency Band**:
276 276  
277 -Ex1: 0x0B45 = 2885mV
161 +0x01: EU868
278 278  
279 -Ex2: 0x0B49 = 2889mV
163 +0x02: US915
280 280  
165 +0x03: IN865
281 281  
282 -=== 2.3.2  DS18B20 Temperature sensor ===
167 +0x04: AU915
283 283  
169 +0x05: KZ865
284 284  
285 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
171 +0x06: RU864
286 286  
173 +0x07: AS923
287 287  
288 -**Example**:
175 +0x08: AS923-1
289 289  
290 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
177 +0x09: AS923-2
291 291  
292 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
179 +0x0a: AS923-3
293 293  
181 +0x0b: CN470
294 294  
295 -=== 2.3.3  Distance ===
183 +0x0c: EU433
296 296  
185 +0x0d: KR920
297 297  
298 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
187 +0x0e: MA869
299 299  
189 +(% style="color:blue" %)**Sub-Band**:
300 300  
301 -**Example**:
191 +AU915 and US915:value 0x00 ~~ 0x08
302 302  
303 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
193 +CN470: value 0x0B ~~ 0x0C
304 304  
195 +Other Bands: Always 0x00
305 305  
306 -=== 2.3.4  Distance signal strength ===
197 +(% style="color:blue" %)**Battery Info**:
307 307  
199 +Check the battery voltage.
308 308  
309 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
201 +Ex1: 0x0B45 = 2885mV
310 310  
203 +Ex2: 0x0B49 = 2889mV
311 311  
312 -**Example**:
313 313  
314 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
206 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
315 315  
316 -Customers can judge whether they need to adjust the environment based on the signal strength.
317 317  
209 +(((
210 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
318 318  
319 -=== 2.3.5  Interrupt Pin ===
212 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
320 320  
214 +Uplink Payload totals 11 bytes.
215 +)))
321 321  
322 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
217 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
218 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
219 +**Size(bytes)**
220 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
221 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
222 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
223 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
224 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
225 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
226 +[[Message Type>>||anchor="HMessageType"]]
227 +)))
323 323  
324 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
229 +==== **MOD~=1** ====
325 325  
326 -**Example:**
231 +Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
327 327  
328 -0x00: Normal uplink packet.
233 +Uplink Payload totals 10 bytes.
329 329  
330 -0x01: Interrupt Uplink Packet.
235 +(% border="1" cellspacing="4" style="width:510px;background-color:#f2f2f2" %)
236 +|(% style="width:60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="width:30px;background-color:#4F81BD;color:white" %)**2**|(% style="width:130px;background-color:#4F81BD;color:white" %)**1**|(% style="width:70px;background-color:#4F81BD;color:white" %)**2**|(% style="width:100px;background-color:#4F81BD;color:white" %)**1**|(% style="width:120px;background-color:#4F81BD;color:white" %)**4**
237 +|(% style="width:91px" %)Value|(% style="width:41px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
331 331  
332 332  
333 -=== 2.3.6  LiDAR temp ===
240 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
334 334  
242 +==== **Battery Info** ====
335 335  
336 -Characterize the internal temperature value of the sensor.
244 +Check the battery voltage for DS20L
337 337  
338 -**Example: **
339 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
340 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
246 +Ex1: 0x0E10 = 3600mV
341 341  
248 +**MOD & Alarm & Interrupt**
342 342  
343 -=== 2.3.7  Message Type ===
250 +**MOD:**
344 344  
252 +**Example: ** (0x60>>6) & 0x3f =1
345 345  
346 -(((
347 -For a normal uplink payload, the message type is always 0x01.
348 -)))
254 +**0x01:**  Regularly detect distance and report.
255 +**0x02: ** Uninterrupted measurement (external power supply).
349 349  
350 -(((
351 -Valid Message Type:
352 -)))
257 +**Alarm:**
353 353  
354 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
355 -|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
356 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
357 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
259 +When the detection distance exceeds the limit, the alarm flag is set to 1.
358 358  
261 +**Interrupt:**
359 359  
360 -=== 2.3.8  Decode payload in The Things Network ===
263 +Whether it is an external interrupt.
361 361  
265 +==== Distance** info** ====
362 362  
363 -While using TTN network, you can add the payload format to decode the payload.
267 +**Example**:
364 364  
269 +If payload is: 0708H: distance = 0708H = 1800 mm
365 365  
366 -[[image:1654592762713-715.png]]
271 +==== **Sensor State** ====
367 367  
273 +Ex1: 0x00: Normal collection distance
368 368  
369 -(((
370 -The payload decoder function for TTN is here:
371 -)))
275 +Ex2 0x0x: Distance collection is wrong
372 372  
373 -(((
374 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 -)))
277 +==== **Interript Count** ====
376 376  
279 +If payload is:000007D0H: count = 07D0H =2000
377 377  
378 -== 2.4  Uplink Interval ==
281 +**MOD=2**
379 379  
283 +Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
380 380  
381 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
285 +|**Size(bytes)**|**2**|**1**|**4**|**2**|**2**
286 +|Value|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/DS20L_LoRaWAN_Smart_Distance_Detector_User_Manual/#HBatteryInfo]]|MOD+ Alarm+Do+ Limit flag|Distance Limit  Alarm count|Upper limit|Lower limit
382 382  
383 383  
384 -== 2.5  ​Show Data in DataCake IoT Server ==
289 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
385 385  
291 +**MOD & Alarm & Do & Limit** **flag**
386 386  
387 -(((
388 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
389 -)))
293 +**MOD:**
390 390  
295 +**Example: ** (0x60>>6) & 0x3f =1
391 391  
392 -(((
393 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
394 -)))
297 +**0x01:**  Regularly detect distance and report.
298 +**0x02: ** Uninterrupted measurement (external power supply).
395 395  
396 -(((
397 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
398 -)))
300 +**Alarm:**
399 399  
302 +When the detection distance exceeds the limit, the alarm flag is set to 1.
400 400  
401 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
304 +**Do:**
402 402  
306 +When the distance exceeds the set threshold, pull the Do pin high.
403 403  
404 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
308 +**Limit** **flag:**
405 405  
310 +Mode for setting threshold: 0~~5
406 406  
407 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
312 +0: does not use upper and lower limits
408 408  
409 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
314 +1: Use upper and lower limits
410 410  
411 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
316 +2: is less than the lower limit value
412 412  
318 +3: is greater than the lower limit value
413 413  
414 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
320 +4: is less than the upper limit
415 415  
416 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
322 +5: is greater than the upper limit
417 417  
324 +**Upper limit:**
418 418  
419 -== 2.6 Datalog Feature ==
326 +The upper limit of the threshold cannot exceed 2000mm.
420 420  
328 +**Lower limit:**
421 421  
422 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
330 +The lower limit of the threshold cannot be less than 3mm.
423 423  
424 424  
425 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
333 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
426 426  
427 427  
428 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
336 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
429 429  
430 -* (((
431 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
432 -)))
433 -* (((
434 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
435 -)))
338 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
436 436  
437 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
340 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
341 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
342 +**Size(bytes)**
343 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
344 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
345 +Reserve(0xFF)
346 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
347 +LiDAR temp
348 +)))|(% style="width:85px" %)Unix TimeStamp
438 438  
439 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
350 +**Interrupt flag & Interrupt level:**
440 440  
352 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
353 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
354 +**Size(bit)**
355 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
356 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
357 +Interrupt flag
358 +)))
441 441  
442 -=== 2.6.2 Unix TimeStamp ===
360 +* (((
361 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
362 +)))
443 443  
364 +For example, in the US915 band, the max payload for different DR is:
444 444  
445 -LDS12-LB uses Unix TimeStamp format based on
366 +**a) DR0:** max is 11 bytes so one entry of data
446 446  
447 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
368 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
448 448  
449 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
370 +**c) DR2:** total payload includes 11 entries of data
450 450  
451 -Below is the converter example
372 +**d) DR3:** total payload includes 22 entries of data.
452 452  
453 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
374 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
454 454  
455 455  
456 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
377 +**Downlink:**
457 457  
379 +0x31 64 CC 68 0C 64 CC 69 74 05
458 458  
459 -=== 2.6.3 Set Device Time ===
381 +[[image:image-20230805144936-2.png||height="113" width="746"]]
460 460  
383 +**Uplink:**
461 461  
462 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
385 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
463 463  
464 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465 465  
466 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
388 +**Parsed Value:**
467 467  
390 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
468 468  
469 -=== 2.6.4 Poll sensor value ===
470 470  
393 +[360,176,30,High,True,2023-08-04 02:53:00],
471 471  
472 -Users can poll sensor values based on timestamps. Below is the downlink command.
395 +[355,168,30,Low,False,2023-08-04 02:53:29],
473 473  
474 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
475 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
477 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
397 +[245,211,30,Low,False,2023-08-04 02:54:29],
478 478  
479 -(((
480 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
481 -)))
399 +[57,700,30,Low,False,2023-08-04 02:55:29],
482 482  
483 -(((
484 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
485 -)))
401 +[361,164,30,Low,True,2023-08-04 02:56:00],
486 486  
487 -(((
488 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
489 -)))
403 +[337,184,30,Low,False,2023-08-04 02:56:40],
490 490  
491 -(((
492 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
493 -)))
405 +[20,4458,30,Low,False,2023-08-04 02:57:40],
494 494  
407 +[362,173,30,Low,False,2023-08-04 02:58:53],
495 495  
496 -== 2.7 Frequency Plans ==
497 497  
410 +**History read from serial port:**
498 498  
499 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
412 +[[image:image-20230805145056-3.png]]
500 500  
501 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
502 502  
415 +=== 2.3.4 Decode payload in The Things Network ===
503 503  
504 -== 2.8 LiDAR ToF Measurement ==
505 505  
506 -=== 2.8.1 Principle of Distance Measurement ===
418 +While using TTN network, you can add the payload format to decode the payload.
507 507  
420 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
508 508  
509 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
510 510  
423 +(((
424 +The payload decoder function for TTN is here:
425 +)))
511 511  
512 -[[image:1654831757579-263.png]]
427 +(((
428 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
429 +)))
513 513  
514 514  
515 -=== 2.8.2 Distance Measurement Characteristics ===
432 +== 2.4 ​Show Data in DataCake IoT Server ==
516 516  
517 517  
518 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 -
520 -[[image:1654831774373-275.png]]
521 -
522 -
523 523  (((
524 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
436 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
525 525  )))
526 526  
527 -(((
528 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 -)))
530 530  
531 531  (((
532 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
441 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
533 533  )))
534 534  
535 -
536 536  (((
537 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
445 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
538 538  )))
539 539  
540 540  
541 -[[image:1654831797521-720.png]]
449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
542 542  
543 543  
544 -(((
545 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
546 -)))
452 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
547 547  
548 -[[image:1654831810009-716.png]]
549 549  
455 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
550 550  
551 -(((
552 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
553 -)))
457 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
554 554  
459 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
555 555  
556 -=== 2.8.3 Notice of usage: ===
557 557  
462 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
558 558  
559 -Possible invalid /wrong reading for LiDAR ToF tech:
464 +[[image:1701152946067-561.png]]
560 560  
561 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565 565  
467 +== 2.5 Frequency Plans ==
566 566  
567 -=== 2.8.4  Reflectivity of different objects ===
568 568  
470 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
569 569  
570 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
571 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
572 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
573 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
574 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
575 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
576 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
577 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
578 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
579 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
580 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
581 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
582 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
583 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
584 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
585 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
586 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
587 -Unpolished white metal surface
588 -)))|(% style="width:93px" %)130%
589 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
590 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
591 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
472 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
592 592  
593 593  
594 -= 3. Configure LDS12-LB =
475 += 3. Configure DS20L =
595 595  
596 596  == 3.1 Configure Methods ==
597 597  
598 598  
599 -LDS12-LB supports below configure method:
480 +DS20L supports below configure method:
600 600  
601 601  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
602 602  
... ... @@ -618,10 +618,10 @@
618 618  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
619 619  
620 620  
621 -== 3.3 Commands special design for LDS12-LB ==
502 +== 3.3 Commands special design for DS20L ==
622 622  
623 623  
624 -These commands only valid for LDS12-LB, as below:
505 +These commands only valid for DS20L, as below:
625 625  
626 626  
627 627  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -636,7 +636,7 @@
636 636  )))
637 637  
638 638  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
520 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
640 640  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
641 641  30000
642 642  OK
... ... @@ -663,29 +663,30 @@
663 663  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
664 664  )))
665 665  * (((
666 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
667 -
668 -
669 -
547 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
670 670  )))
671 671  
672 672  === 3.3.2 Set Interrupt Mode ===
673 673  
674 674  
675 -Feature, Set Interrupt mode for PA8 of pin.
553 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
676 676  
677 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
555 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
678 678  
679 679  (% style="color:blue" %)**AT Command: AT+INTMOD**
680 680  
681 681  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
682 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
560 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
683 683  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
684 684  0
685 685  OK
686 686  the mode is 0 =Disable Interrupt
687 687  )))
688 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
566 +|(% style="width:154px" %)(((
567 +AT+INTMOD=3
568 +
569 +(default)
570 +)))|(% style="width:196px" %)(((
689 689  Set Transmit Interval
690 690  0. (Disable Interrupt),
691 691  ~1. (Trigger by rising and falling edge)
... ... @@ -703,10 +703,78 @@
703 703  
704 704  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
705 705  
588 +
589 +== 3.3.3 Set work mode ==
590 +
591 +
592 +Feature: Switch working mode
593 +
594 +(% style="color:blue" %)**AT Command: AT+MOD**
595 +
596 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
597 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
598 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
599 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
600 +OK
601 +Attention:Take effect after ATZ
602 +)))
603 +
604 +(% style="color:blue" %)**Downlink Command:**
605 +
606 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
607 +
608 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
609 +
610 +=== 3.3.4 Set threshold and threshold mode ===
611 +
612 +
613 +Feature, Set threshold and threshold mode
614 +
615 +When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
616 +
617 +(% style="color:blue" %)**AT Command: AT+DOL**
618 +
619 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
620 +|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
621 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
622 +0,0,0,0,400
623 +OK
624 +)))
625 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
626 +
627 +
628 +
629 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
630 +|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
631 +|(% style="width:251px" %)1: Use upper and lower limits
632 +|(% style="width:251px" %)2: Less than the lower limit
633 +|(% style="width:251px" %)3: Greater than the lower limit
634 +|(% style="width:251px" %)4: Less than the upper limit
635 +|(% style="width:251px" %)5: Greater than the upper limit
636 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
637 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
638 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
639 +|(% style="width:251px" %)1 Person or object counting statistics
640 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
641 +0~~10000ms
642 +
643 +
644 +)))
645 +
646 +(% style="color:blue" %)**Downlink Command: 0x07**
647 +
648 +Format: Command Code (0x07) followed by 9bytes.
649 +
650 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
651 +
652 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
653 +
654 +
655 +
706 706  = 4. Battery & Power Consumption =
707 707  
708 708  
709 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
659 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
710 710  
711 711  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
712 712  
... ... @@ -715,7 +715,7 @@
715 715  
716 716  
717 717  (% class="wikigeneratedid" %)
718 -User can change firmware LDS12-LB to:
668 +User can change firmware DS20L to:
719 719  
720 720  * Change Frequency band/ region.
721 721  
... ... @@ -723,7 +723,7 @@
723 723  
724 724  * Fix bugs.
725 725  
726 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
676 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
727 727  
728 728  Methods to Update Firmware:
729 729  
... ... @@ -733,10 +733,10 @@
733 733  
734 734  = 6. FAQ =
735 735  
736 -== 6.1 What is the frequency plan for LDS12-LB? ==
686 +== 6.1 What is the frequency plan for DS20L? ==
737 737  
738 738  
739 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
689 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
740 740  
741 741  
742 742  = 7. Trouble Shooting =
... ... @@ -751,11 +751,11 @@
751 751  
752 752  
753 753  (((
754 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
704 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
755 755  )))
756 756  
757 757  (((
758 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
708 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
759 759  )))
760 760  
761 761  
... ... @@ -764,7 +764,7 @@
764 764  )))
765 765  
766 766  (((
767 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
717 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
768 768  )))
769 769  
770 770  
... ... @@ -771,7 +771,7 @@
771 771  = 8. Order Info =
772 772  
773 773  
774 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
724 +Part Number: (% style="color:blue" %)**DS20L-XXX**
775 775  
776 776  (% style="color:red" %)**XXX**(%%): **The default frequency band**
777 777  
... ... @@ -796,7 +796,7 @@
796 796  
797 797  (% style="color:#037691" %)**Package Includes**:
798 798  
799 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
749 +* DS20L LoRaWAN Smart Distance Detector x 1
800 800  
801 801  (% style="color:#037691" %)**Dimension and weight**:
802 802  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.2 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content