Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.4
edited by Xiaoling
on 2023/06/14 16:46
Change comment: There is no comment for this version
To version 113.6
edited by Xiaoling
on 2023/11/10 10:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,261 +18,213 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 -(% style="color:#037691" %)**LoRa Spec:**
83 -
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
88 -
89 -(% style="color:#037691" %)**Battery:**
90 -
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
96 -
97 -(% style="color:#037691" %)**Power Consumption**
98 -
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 -
102 -
103 -
104 -== 1.4 Applications ==
105 -
106 -
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
114 -
115 -
116 -
117 117  (% style="display:none" %)
118 118  
119 -== 1.5 Sleep mode and working mode ==
120 120  
69 += 2. Configure DS20L to connect to LoRaWAN network =
121 121  
122 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
71 +== 2.1 How it works ==
123 123  
124 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
125 125  
74 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
126 126  
127 -== 1.6 Button & LEDs ==
76 +(% style="display:none" %) (%%)
128 128  
78 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
129 129  
130 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
131 131  
81 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
132 132  
133 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
134 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
135 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
136 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
137 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
138 -)))
139 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
140 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
141 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
142 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
143 -)))
144 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
83 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
145 145  
146 -== 1.7 BLE connection ==
85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
147 147  
148 148  
149 -LDS12-LB support BLE remote configure.
88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
150 150  
151 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
90 +Each DS20L is shipped with a sticker with the default device EUI as below:
152 152  
153 -* Press button to send an uplink
154 -* Press button to active device.
155 -* Device Power on or reset.
92 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
156 156  
157 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158 158  
95 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
159 159  
160 -== 1.8 Pin Definitions ==
161 161  
162 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
98 +(% style="color:blue" %)**Register the device**
163 163  
100 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
164 164  
165 165  
166 -== 1.9 Mechanical ==
103 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
167 167  
105 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
168 168  
169 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
170 170  
108 +(% style="color:blue" %)**Add APP EUI in the application**
171 171  
172 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
173 173  
111 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
174 174  
175 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
176 176  
114 +(% style="color:blue" %)**Add APP KEY**
177 177  
178 -(% style="color:blue" %)**Probe Mechanical:**
116 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
179 179  
180 180  
119 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
181 181  
182 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
183 183  
122 +Press the button for 5 seconds to activate the DS20L.
184 184  
185 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
124 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
186 186  
187 -== 2.1 How it works ==
126 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 188  
189 189  
190 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
129 +== 2.3 ​Uplink Payload ==
191 191  
192 -(% style="display:none" %) (%%)
131 +=== 2.3.1 Device Status, FPORT~=5 ===
193 193  
194 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
195 195  
134 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
196 196  
197 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
136 +The Payload format is as below.
198 198  
199 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
138 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
139 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
140 +**Size(bytes)**
141 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
142 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
200 200  
201 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
144 +Example parse in TTNv3
202 202  
146 +[[image:image-20230805103904-1.png||height="131" width="711"]]
203 203  
204 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
148 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
205 205  
206 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
150 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
207 207  
208 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
152 +(% style="color:blue" %)**Frequency Band**:
209 209  
154 +0x01: EU868
210 210  
211 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
156 +0x02: US915
212 212  
158 +0x03: IN865
213 213  
214 -(% style="color:blue" %)**Register the device**
160 +0x04: AU915
215 215  
216 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
162 +0x05: KZ865
217 217  
164 +0x06: RU864
218 218  
219 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
166 +0x07: AS923
220 220  
221 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
168 +0x08: AS923-1
222 222  
170 +0x09: AS923-2
223 223  
224 -(% style="color:blue" %)**Add APP EUI in the application**
172 +0x0a: AS923-3
225 225  
174 +0x0b: CN470
226 226  
227 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
176 +0x0c: EU433
228 228  
178 +0x0d: KR920
229 229  
230 -(% style="color:blue" %)**Add APP KEY**
180 +0x0e: MA869
231 231  
232 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
182 +(% style="color:blue" %)**Sub-Band**:
233 233  
184 +AU915 and US915:value 0x00 ~~ 0x08
234 234  
235 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
186 +CN470: value 0x0B ~~ 0x0C
236 236  
188 +Other Bands: Always 0x00
237 237  
238 -Press the button for 5 seconds to activate the LDS12-LB.
190 +(% style="color:blue" %)**Battery Info**:
239 239  
240 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
192 +Check the battery voltage.
241 241  
242 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
194 +Ex1: 0x0B45 = 2885mV
243 243  
196 +Ex2: 0x0B49 = 2889mV
244 244  
245 -== 2.3  ​Uplink Payload ==
246 246  
199 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
247 247  
248 -(((
249 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
250 -)))
251 251  
252 252  (((
253 -Uplink payload includes in total 11 bytes.
254 -)))
203 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
255 255  
205 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
256 256  
257 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
258 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
207 +Uplink Payload totals 11 bytes.
208 +)))
209 +
210 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
211 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
259 259  **Size(bytes)**
260 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
261 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
262 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
263 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
264 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
265 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
266 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
213 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
214 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
215 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
216 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
217 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
218 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
219 +[[Message Type>>||anchor="HMessageType"]]
267 267  )))
268 268  
269 -[[image:1654833689380-972.png]]
222 +[[image:image-20230805104104-2.png||height="136" width="754"]]
270 270  
271 271  
272 -=== 2.3.1  Battery Info ===
225 +==== (% style="color:blue" %)**Battery Info**(%%) ====
273 273  
274 274  
275 -Check the battery voltage for LDS12-LB.
228 +Check the battery voltage for DS20L.
276 276  
277 277  Ex1: 0x0B45 = 2885mV
278 278  
... ... @@ -279,7 +279,7 @@
279 279  Ex2: 0x0B49 = 2889mV
280 280  
281 281  
282 -=== 2.3.2  DS18B20 Temperature sensor ===
235 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
283 283  
284 284  
285 285  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -292,7 +292,7 @@
292 292  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
293 293  
294 294  
295 -=== 2.3.3  Distance ===
248 +==== (% style="color:blue" %)**Distance**(%%) ====
296 296  
297 297  
298 298  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -303,7 +303,7 @@
303 303  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
304 304  
305 305  
306 -=== 2.3.4  Distance signal strength ===
259 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
307 307  
308 308  
309 309  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -316,21 +316,36 @@
316 316  Customers can judge whether they need to adjust the environment based on the signal strength.
317 317  
318 318  
319 -=== 2.3.5  Interrupt Pin ===
272 +**1) When the sensor detects valid data:**
320 320  
274 +[[image:image-20230805155335-1.png||height="145" width="724"]]
321 321  
322 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
323 323  
324 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
277 +**2) When the sensor detects invalid data:**
325 325  
279 +[[image:image-20230805155428-2.png||height="139" width="726"]]
280 +
281 +
282 +**3) When the sensor is not connected:**
283 +
284 +[[image:image-20230805155515-3.png||height="143" width="725"]]
285 +
286 +
287 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
288 +
289 +
290 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
291 +
292 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
293 +
326 326  **Example:**
327 327  
328 -0x00: Normal uplink packet.
296 +If byte[0]&0x01=0x00 : Normal uplink packet.
329 329  
330 -0x01: Interrupt Uplink Packet.
298 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
331 331  
332 332  
333 -=== 2.3.6  LiDAR temp ===
301 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
334 334  
335 335  
336 336  Characterize the internal temperature value of the sensor.
... ... @@ -340,7 +340,7 @@
340 340  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
341 341  
342 342  
343 -=== 2.3.7  Message Type ===
311 +==== (% style="color:blue" %)**Message Type**(%%) ====
344 344  
345 345  
346 346  (((
... ... @@ -352,39 +352,116 @@
352 352  )))
353 353  
354 354  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
355 -|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
356 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
357 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
323 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
324 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
325 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
358 358  
327 +[[image:image-20230805150315-4.png||height="233" width="723"]]
359 359  
360 -=== 2.3.8  Decode payload in The Things Network ===
361 361  
330 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
362 362  
363 -While using TTN network, you can add the payload format to decode the payload.
364 364  
333 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
365 365  
366 -[[image:1654592762713-715.png]]
335 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
367 367  
337 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
338 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
339 +**Size(bytes)**
340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
341 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
342 +Reserve(0xFF)
343 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
344 +LiDAR temp
345 +)))|(% style="width:85px" %)Unix TimeStamp
368 368  
369 -(((
370 -The payload decoder function for TTN is here:
347 +**Interrupt flag & Interrupt level:**
348 +
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
350 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
351 +**Size(bit)**
352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
353 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
354 +Interrupt flag
371 371  )))
372 372  
373 -(((
374 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
357 +* (((
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
375 375  )))
376 376  
361 +For example, in the US915 band, the max payload for different DR is:
377 377  
378 -== 2.4  Uplink Interval ==
363 +**a) DR0:** max is 11 bytes so one entry of data
379 379  
365 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
380 380  
381 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
367 +**c) DR2:** total payload includes 11 entries of data
382 382  
369 +**d) DR3:** total payload includes 22 entries of data.
383 383  
384 -== 2.5  ​Show Data in DataCake IoT Server ==
371 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
385 385  
386 386  
374 +**Downlink:**
375 +
376 +0x31 64 CC 68 0C 64 CC 69 74 05
377 +
378 +[[image:image-20230805144936-2.png||height="113" width="746"]]
379 +
380 +**Uplink:**
381 +
382 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
383 +
384 +
385 +**Parsed Value:**
386 +
387 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
388 +
389 +
390 +[360,176,30,High,True,2023-08-04 02:53:00],
391 +
392 +[355,168,30,Low,False,2023-08-04 02:53:29],
393 +
394 +[245,211,30,Low,False,2023-08-04 02:54:29],
395 +
396 +[57,700,30,Low,False,2023-08-04 02:55:29],
397 +
398 +[361,164,30,Low,True,2023-08-04 02:56:00],
399 +
400 +[337,184,30,Low,False,2023-08-04 02:56:40],
401 +
402 +[20,4458,30,Low,False,2023-08-04 02:57:40],
403 +
404 +[362,173,30,Low,False,2023-08-04 02:58:53],
405 +
406 +
407 +**History read from serial port:**
408 +
409 +[[image:image-20230805145056-3.png]]
410 +
411 +
412 +=== 2.3.4 Decode payload in The Things Network ===
413 +
414 +
415 +While using TTN network, you can add the payload format to decode the payload.
416 +
417 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
418 +
419 +
387 387  (((
421 +The payload decoder function for TTN is here:
422 +)))
423 +
424 +(((
425 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
426 +)))
427 +
428 +
429 +== 2.4 ​Show Data in DataCake IoT Server ==
430 +
431 +
432 +(((
388 388  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
389 389  )))
390 390  
... ... @@ -406,7 +406,7 @@
406 406  
407 407  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
408 408  
409 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
454 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
410 410  
411 411  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
412 412  
... ... @@ -416,34 +416,31 @@
416 416  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
417 417  
418 418  
419 -== 2.6 Datalog Feature ==
464 +== 2.5 Datalog Feature ==
420 420  
421 421  
422 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
467 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
423 423  
424 424  
425 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
470 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
426 426  
427 427  
428 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
473 +Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
429 429  
430 430  * (((
431 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
476 +a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
432 432  )))
433 433  * (((
434 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
479 +b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
435 435  )))
436 436  
437 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
438 438  
439 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
440 440  
484 +=== 2.5.2 Unix TimeStamp ===
441 441  
442 -=== 2.6.2 Unix TimeStamp ===
443 443  
487 +DS20L uses Unix TimeStamp format based on
444 444  
445 -LDS12-LB uses Unix TimeStamp format based on
446 -
447 447  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
448 448  
449 449  User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
... ... @@ -456,23 +456,23 @@
456 456  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
457 457  
458 458  
459 -=== 2.6.3 Set Device Time ===
501 +=== 2.5.3 Set Device Time ===
460 460  
461 461  
462 462  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
463 463  
464 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
506 +Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465 465  
466 466  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
467 467  
468 468  
469 -=== 2.6.4 Poll sensor value ===
511 +=== 2.5.4 Poll sensor value ===
470 470  
471 471  
472 472  Users can poll sensor values based on timestamps. Below is the downlink command.
473 473  
474 474  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
475 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
517 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 476  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
477 477  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
478 478  
... ... @@ -493,7 +493,7 @@
493 493  )))
494 494  
495 495  
496 -== 2.7 Frequency Plans ==
538 +== 2.6 Frequency Plans ==
497 497  
498 498  
499 499  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -501,98 +501,8 @@
501 501  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
502 502  
503 503  
504 -== 2.8 LiDAR ToF Measurement ==
546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
505 505  
506 -=== 2.8.1 Principle of Distance Measurement ===
507 -
508 -
509 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
510 -
511 -
512 -[[image:1654831757579-263.png]]
513 -
514 -
515 -=== 2.8.2 Distance Measurement Characteristics ===
516 -
517 -
518 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519 -
520 -[[image:1654831774373-275.png]]
521 -
522 -
523 -(((
524 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 -)))
526 -
527 -(((
528 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 -)))
530 -
531 -(((
532 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 -)))
534 -
535 -
536 -(((
537 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 -)))
539 -
540 -
541 -[[image:1654831797521-720.png]]
542 -
543 -
544 -(((
545 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
546 -)))
547 -
548 -[[image:1654831810009-716.png]]
549 -
550 -
551 -(((
552 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
553 -)))
554 -
555 -
556 -=== 2.8.3 Notice of usage: ===
557 -
558 -
559 -Possible invalid /wrong reading for LiDAR ToF tech:
560 -
561 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565 -
566 -
567 -=== 2.8.4  Reflectivity of different objects ===
568 -
569 -
570 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
571 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
572 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
573 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
574 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
575 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
576 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
577 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
578 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
579 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
580 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
581 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
582 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
583 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
584 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
585 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
586 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
587 -Unpolished white metal surface
588 -)))|(% style="width:93px" %)130%
589 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
590 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
591 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
592 -
593 -
594 -= 3. Configure LDS12-LB =
595 -
596 596  == 3.1 Configure Methods ==
597 597  
598 598  
... ... @@ -636,7 +636,7 @@
636 636  )))
637 637  
638 638  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
591 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
640 640  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
641 641  30000
642 642  OK
... ... @@ -672,20 +672,24 @@
672 672  === 3.3.2 Set Interrupt Mode ===
673 673  
674 674  
675 -Feature, Set Interrupt mode for PA8 of pin.
627 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
676 676  
677 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
629 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
678 678  
679 679  (% style="color:blue" %)**AT Command: AT+INTMOD**
680 680  
681 681  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
682 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
634 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
683 683  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
684 684  0
685 685  OK
686 686  the mode is 0 =Disable Interrupt
687 687  )))
688 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
640 +|(% style="width:154px" %)(((
641 +AT+INTMOD=2
642 +
643 +(default)
644 +)))|(% style="width:196px" %)(((
689 689  Set Transmit Interval
690 690  0. (Disable Interrupt),
691 691  ~1. (Trigger by rising and falling edge)
... ... @@ -703,6 +703,7 @@
703 703  
704 704  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
705 705  
662 +
706 706  = 4. Battery & Power Consumption =
707 707  
708 708  
... ... @@ -723,7 +723,7 @@
723 723  
724 724  * Fix bugs.
725 725  
726 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
727 727  
728 728  Methods to Update Firmware:
729 729  
... ... @@ -751,11 +751,11 @@
751 751  
752 752  
753 753  (((
754 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
711 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
755 755  )))
756 756  
757 757  (((
758 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
715 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
759 759  )))
760 760  
761 761  
... ... @@ -764,7 +764,7 @@
764 764  )))
765 765  
766 766  (((
767 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
724 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
768 768  )))
769 769  
770 770  
... ... @@ -771,7 +771,7 @@
771 771  = 8. Order Info =
772 772  
773 773  
774 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
775 775  
776 776  (% style="color:red" %)**XXX**(%%): **The default frequency band**
777 777  
... ... @@ -796,7 +796,7 @@
796 796  
797 797  (% style="color:#037691" %)**Package Includes**:
798 798  
799 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
800 800  
801 801  (% style="color:#037691" %)**Dimension and weight**:
802 802  
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content