Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.3
edited by Xiaoling
on 2023/06/14 16:32
Change comment: There is no comment for this version
To version 118.3
edited by Xiaoling
on 2023/11/28 14:04
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,451 +18,423 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
53 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
55 +* Operation Temperature: -40 ~~ 80 °C
56 +* Operation Humidity: 0~~99.9%RH (no Dew)
57 +* Storage Temperature: -10 ~~ 45°C
58 +* Measure Range: 3cm~~200cm @ 90% reflectivity
59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 +* ToF FoV: ±9°, Total 18°
61 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
63 +== 1.4 Power Consumption ==
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 81  
82 -(% style="color:#037691" %)**LoRa Spec:**
66 +(% style="color:#037691" %)**Battery Power Mode:**
83 83  
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
68 +* Idle: 0.003 mA @ 3.3v
69 +* Max : 360 mA
88 88  
89 -(% style="color:#037691" %)**Battery:**
71 +(% style="color:#037691" %)**Continuously mode**:
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
73 +* Idle: 21 mA @ 3.3v
74 +* Max : 360 mA
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
76 += 2. Configure DS20L to connect to LoRaWAN network =
98 98  
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
78 +== 2.1 How it works ==
101 101  
102 -== 1.4 Suitable Container & Liquid ==
103 103  
81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
104 104  
105 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 -* Container shape is regular, and surface is smooth.
107 -* Container Thickness:
108 -** Pure metal material.  2~~8mm, best is 3~~5mm
109 -** Pure non metal material: <10 mm
110 -* Pure liquid without irregular deposition.
83 +(% style="display:none" %) (%%)
111 111  
112 -(% style="display:none" %)
85 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
113 113  
114 -== 1.5 Install LDS12-LB ==
115 115  
88 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
116 116  
117 -(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
118 118  
119 -LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
120 120  
121 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
122 122  
96 +Each DS20L is shipped with a sticker with the default device EUI as below:
123 123  
124 -(((
125 -(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
126 -)))
98 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
127 127  
128 -(((
129 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
130 -)))
131 131  
132 -[[image:image-20230613143052-5.png]]
101 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
133 133  
134 134  
135 -No polish needed if the container is shine metal surface without paint or non-metal container.
104 +(% style="color:blue" %)**Register the device**
136 136  
137 -[[image:image-20230613143125-6.png]]
106 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
138 138  
139 139  
140 -(((
141 -(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
142 -)))
109 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
143 143  
144 -(((
145 -Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
146 -)))
111 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
147 147  
148 -(((
149 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
150 -)))
151 151  
152 -(((
153 -After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
154 -)))
114 +(% style="color:blue" %)**Add APP EUI in the application**
155 155  
156 156  
157 -(((
158 -(% style="color:blue" %)**LED Status:**
159 -)))
117 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
160 160  
161 -* (((
162 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
163 -)))
164 164  
165 -* (((
166 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
167 -)))
168 -* (((
169 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
170 -)))
120 +(% style="color:blue" %)**Add APP KEY**
171 171  
172 -(((
173 -LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
174 -)))
122 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
175 175  
176 176  
177 -(((
178 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
179 -)))
125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
180 180  
127 +[[image:image-20231128133704-1.png||height="189" width="441"]]
181 181  
182 -(((
183 -(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
184 -)))
129 +Press the button for 5 seconds to activate the DS20L.
185 185  
186 -(((
187 -Prepare Eproxy AB glue.
188 -)))
131 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
189 189  
190 -(((
191 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
192 -)))
133 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
193 193  
194 -(((
195 -Reset LDS12-LB and see if the BLUE LED is slowly blinking.
196 -)))
197 197  
198 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
136 +== 2.3 ​Uplink Payload ==
199 199  
138 +=== 2.3.1 Device Status, FPORT~=5 ===
200 200  
201 -(((
202 -(% style="color:red" %)**Note :**
203 203  
204 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
205 -)))
141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
206 206  
207 -(((
208 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
209 -)))
143 +The Payload format is as below.
210 210  
145 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
146 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
147 +**Size(bytes)**
148 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
149 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
211 211  
212 -== 1.6 Applications ==
151 +Example parse in TTNv3
213 213  
153 +[[image:1701149922873-259.png]]
214 214  
215 -* Smart liquid control solution
155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
216 216  
217 -* Smart liquefied gas solution
157 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
218 218  
219 -== 1.7 Precautions ==
159 +(% style="color:blue" %)**Frequency Band**:
220 220  
161 +0x01: EU868
221 221  
222 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
163 +0x02: US915
223 223  
224 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
165 +0x03: IN865
225 225  
226 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
167 +0x04: AU915
227 227  
228 -(% style="display:none" %)
169 +0x05: KZ865
229 229  
230 -== 1.8 Sleep mode and working mode ==
171 +0x06: RU864
231 231  
173 +0x07: AS923
232 232  
233 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
175 +0x08: AS923-1
234 234  
235 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
177 +0x09: AS923-2
236 236  
179 +0x0a: AS923-3
237 237  
238 -== 1.9 Button & LEDs ==
181 +0x0b: CN470
239 239  
183 +0x0c: EU433
240 240  
241 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
185 +0x0d: KR920
242 242  
187 +0x0e: MA869
243 243  
244 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
245 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
246 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
247 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
249 -)))
250 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
251 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
252 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
253 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
254 -)))
255 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
189 +(% style="color:blue" %)**Sub-Band**:
256 256  
257 -== 1.10 BLE connection ==
191 +AU915 and US915:value 0x00 ~~ 0x08
258 258  
193 +CN470: value 0x0B ~~ 0x0C
259 259  
260 -LDS12-LB support BLE remote configure.
195 +Other Bands: Always 0x00
261 261  
262 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
197 +(% style="color:blue" %)**Battery Info**:
263 263  
264 -* Press button to send an uplink
265 -* Press button to active device.
266 -* Device Power on or reset.
199 +Check the battery voltage.
267 267  
268 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
201 +Ex1: 0x0B45 = 2885mV
269 269  
203 +Ex2: 0x0B49 = 2889mV
270 270  
271 -== 1.11 Pin Definitions ==
272 272  
273 -[[image:image-20230523174230-1.png]]
206 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
274 274  
275 275  
276 -== 1.12 Mechanical ==
209 +(((
210 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
277 277  
212 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
278 278  
279 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
214 +Uplink Payload totals 11 bytes.
215 +)))
280 280  
217 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
218 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
219 +**Size(bytes)**
220 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
221 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
222 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
223 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
224 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
225 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
226 +[[Message Type>>||anchor="HMessageType"]]
227 +)))
281 281  
282 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
229 +[[image:image-20230805104104-2.png||height="136" width="754"]]
283 283  
284 284  
285 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
232 +==== (% style="color:blue" %)**Battery Info**(%%) ====
286 286  
287 287  
288 -(% style="color:blue" %)**Probe Mechanical:**
235 +Check the battery voltage for DS20L.
289 289  
237 +Ex1: 0x0B45 = 2885mV
290 290  
239 +Ex2: 0x0B49 = 2889mV
291 291  
292 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
293 293  
242 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
294 294  
295 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
296 296  
297 -== 2.1 How it works ==
245 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
298 298  
299 299  
300 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
248 +**Example**:
301 301  
302 -(% style="display:none" %) (%%)
250 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
303 303  
304 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
252 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
305 305  
306 306  
307 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
255 +==== (% style="color:blue" %)**Distance**(%%) ====
308 308  
309 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
310 310  
311 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
258 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
312 312  
313 313  
314 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
261 +**Example**:
315 315  
316 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
263 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
317 317  
318 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
319 319  
266 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
320 320  
321 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
322 322  
269 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
323 323  
324 -(% style="color:blue" %)**Register the device**
325 325  
326 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
272 +**Example**:
327 327  
274 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
328 328  
329 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
276 +Customers can judge whether they need to adjust the environment based on the signal strength.
330 330  
331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
332 332  
279 +**1) When the sensor detects valid data:**
333 333  
334 -(% style="color:blue" %)**Add APP EUI in the application**
281 +[[image:image-20230805155335-1.png||height="145" width="724"]]
335 335  
336 336  
337 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
284 +**2) When the sensor detects invalid data:**
338 338  
286 +[[image:image-20230805155428-2.png||height="139" width="726"]]
339 339  
340 -(% style="color:blue" %)**Add APP KEY**
341 341  
342 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
289 +**3) When the sensor is not connected:**
343 343  
291 +[[image:image-20230805155515-3.png||height="143" width="725"]]
344 344  
345 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
346 346  
294 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
347 347  
348 -Press the button for 5 seconds to activate the LDS12-LB.
349 349  
350 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
297 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
351 351  
352 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
299 +Note: The Internet Pin is a separate pin in the screw terminal. Sepin mapping of GPIO_EXTI .
353 353  
301 +**Example:**
354 354  
355 -== 2.3  ​Uplink Payload ==
303 +If byte[0]&0x01=0x00 : Normal uplink packet.
356 356  
305 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
357 357  
307 +
308 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
309 +
310 +
311 +Characterize the internal temperature value of the sensor.
312 +
313 +**Example: **
314 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
315 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
316 +
317 +
318 +==== (% style="color:blue" %)**Message Type**(%%) ====
319 +
320 +
358 358  (((
359 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
322 +For a normal uplink payload, the message type is always 0x01.
360 360  )))
361 361  
362 362  (((
363 -Uplink payload includes in total 8 bytes.
326 +Valid Message Type:
364 364  )))
365 365  
366 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
367 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
368 -**Size(bytes)**
369 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
370 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
371 -[[Distance>>||anchor="H2.3.2A0Distance"]]
372 -(unit: mm)
373 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
374 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
375 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
329 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
330 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
331 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
332 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
376 376  
377 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
334 +[[image:image-20230805150315-4.png||height="233" width="723"]]
378 378  
379 379  
380 -=== 2.3. Battery Info ===
337 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
381 381  
382 382  
383 -Check the battery voltage for LDS12-LB.
340 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
384 384  
385 -Ex1: 0x0B45 = 2885mV
342 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
386 386  
387 -Ex2: 0x0B49 = 2889mV
344 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
345 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
346 +**Size(bytes)**
347 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
348 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
349 +Reserve(0xFF)
350 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
351 +LiDAR temp
352 +)))|(% style="width:85px" %)Unix TimeStamp
388 388  
354 +**Interrupt flag & Interrupt level:**
389 389  
390 -=== 2.3.2  Distance ===
356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
357 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
358 +**Size(bit)**
359 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
360 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
361 +Interrupt flag
362 +)))
391 391  
392 -
393 -(((
394 -Get the distance. Flat object range 20mm - 2000mm.
364 +* (((
365 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
395 395  )))
396 396  
397 -(((
398 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
368 +For example, in the US915 band, the max payload for different DR is:
399 399  
400 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
401 -)))
370 +**a) DR0:** max is 11 bytes so one entry of data
402 402  
403 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
372 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
404 404  
405 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
374 +**c) DR2:** total payload includes 11 entries of data
406 406  
407 -=== 2.3.3  Interrupt Pin ===
376 +**d) DR3:** total payload includes 22 entries of data.
408 408  
378 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
409 409  
410 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
411 411  
412 -**Example:**
381 +**Downlink:**
413 413  
414 -0x00: Normal uplink packet.
383 +0x31 64 CC 68 0C 64 CC 69 74 05
415 415  
416 -0x01: Interrupt Uplink Packet.
385 +[[image:image-20230805144936-2.png||height="113" width="746"]]
417 417  
387 +**Uplink:**
418 418  
419 -=== 2.3.4  DS18B20 Temperature sensor ===
389 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
420 420  
421 421  
422 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
392 +**Parsed Value:**
423 423  
424 -**Example**:
394 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
425 425  
426 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
427 427  
428 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
397 +[360,176,30,High,True,2023-08-04 02:53:00],
429 429  
399 +[355,168,30,Low,False,2023-08-04 02:53:29],
430 430  
431 -=== 2.3.5  Sensor Flag ===
401 +[245,211,30,Low,False,2023-08-04 02:54:29],
432 432  
403 +[57,700,30,Low,False,2023-08-04 02:55:29],
433 433  
434 -(((
435 -0x01: Detect Ultrasonic Sensor
436 -)))
405 +[361,164,30,Low,True,2023-08-04 02:56:00],
437 437  
438 -(((
439 -0x00: No Ultrasonic Sensor
440 -)))
407 +[337,184,30,Low,False,2023-08-04 02:56:40],
441 441  
409 +[20,4458,30,Low,False,2023-08-04 02:57:40],
442 442  
443 -=== 2.3.6  Decode payload in The Things Network ===
411 +[362,173,30,Low,False,2023-08-04 02:58:53],
444 444  
445 445  
446 -While using TTN network, you can add the payload format to decode the payload.
414 +**History read from serial port:**
447 447  
448 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
416 +[[image:image-20230805145056-3.png]]
449 449  
450 -The payload decoder function for TTN V3 is here:
451 451  
452 -(((
453 -LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
454 -)))
419 +=== 2.3.4 Decode payload in The Things Network ===
455 455  
456 456  
457 -== 2.4  Uplink Interval ==
422 +While using TTN network, you can add the payload format to decode the payload.
458 458  
424 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
459 459  
460 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
461 461  
427 +(((
428 +The payload decoder function for TTN is here:
429 +)))
462 462  
463 -== 2.5  ​Show Data in DataCake IoT Server ==
431 +(((
432 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
433 +)))
464 464  
465 465  
436 +== 2.4 ​Show Data in DataCake IoT Server ==
437 +
438 +
466 466  (((
467 467  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
468 468  )))
... ... @@ -485,7 +485,7 @@
485 485  
486 486  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
487 487  
488 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
461 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
489 489  
490 490  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
491 491  
... ... @@ -495,97 +495,20 @@
495 495  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
496 496  
497 497  
498 -== 2.6 Datalog Feature ==
471 +== 2.5 Frequency Plans ==
499 499  
500 500  
501 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
474 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
502 502  
503 -
504 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
505 -
506 -
507 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
508 -
509 -* (((
510 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
511 -)))
512 -* (((
513 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
514 -)))
515 -
516 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
517 -
518 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
519 -
520 -
521 -=== 2.6.2 Unix TimeStamp ===
522 -
523 -
524 -LDS12-LB uses Unix TimeStamp format based on
525 -
526 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
527 -
528 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
529 -
530 -Below is the converter example
531 -
532 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
533 -
534 -
535 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
536 -
537 -
538 -=== 2.6.3 Set Device Time ===
539 -
540 -
541 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
542 -
543 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
544 -
545 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
546 -
547 -
548 -=== 2.6.4 Poll sensor value ===
549 -
550 -
551 -Users can poll sensor values based on timestamps. Below is the downlink command.
552 -
553 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
554 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
555 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
556 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
557 -
558 -(((
559 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
560 -)))
561 -
562 -(((
563 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
564 -)))
565 -
566 -(((
567 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
568 -)))
569 -
570 -(((
571 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
572 -)))
573 -
574 -
575 -== 2.7 Frequency Plans ==
576 -
577 -
578 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
579 -
580 580  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
581 581  
582 582  
583 -= 3. Configure LDS12-LB =
479 += 3. Configure DS20L =
584 584  
585 585  == 3.1 Configure Methods ==
586 586  
587 587  
588 -LDS12-LB supports below configure method:
484 +DS20L supports below configure method:
589 589  
590 590  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
591 591  
... ... @@ -607,10 +607,10 @@
607 607  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
608 608  
609 609  
610 -== 3.3 Commands special design for LDS12-LB ==
506 +== 3.3 Commands special design for DS20L ==
611 611  
612 612  
613 -These commands only valid for LDS12-LB, as below:
509 +These commands only valid for DS20L, as below:
614 614  
615 615  
616 616  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -625,7 +625,7 @@
625 625  )))
626 626  
627 627  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
628 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
524 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
629 629  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
630 630  30000
631 631  OK
... ... @@ -652,29 +652,31 @@
652 652  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
653 653  )))
654 654  * (((
655 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
656 -
657 -
658 -
551 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
659 659  )))
660 660  
554 +
661 661  === 3.3.2 Set Interrupt Mode ===
662 662  
663 663  
664 -Feature, Set Interrupt mode for PA8 of pin.
558 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
665 665  
666 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
560 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
667 667  
668 668  (% style="color:blue" %)**AT Command: AT+INTMOD**
669 669  
670 670  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
671 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
565 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
672 672  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
673 673  0
674 674  OK
675 675  the mode is 0 =Disable Interrupt
676 676  )))
677 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
571 +|(% style="width:154px" %)(((
572 +AT+INTMOD=3
573 +
574 +(default)
575 +)))|(% style="width:196px" %)(((
678 678  Set Transmit Interval
679 679  0. (Disable Interrupt),
680 680  ~1. (Trigger by rising and falling edge)
... ... @@ -692,10 +692,82 @@
692 692  
693 693  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
694 694  
593 +
594 +
595 +== 3.3.3 Set work mode ==
596 +
597 +
598 +Feature: Switch working mode
599 +
600 +(% style="color:blue" %)**AT Command: AT+MOD**
601 +
602 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
603 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response**
604 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
605 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
606 +OK
607 +
608 +Attention:Take effect after ATZ
609 +)))
610 +
611 +(% style="color:blue" %)**Downlink Command:**
612 +
613 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
614 +
615 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
616 +
617 +
618 +=== 3.3.4 Set threshold and threshold mode ===
619 +
620 +
621 +Feature, Set threshold and threshold mode
622 +
623 +When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms.
624 +
625 +(% style="color:blue" %)**AT Command: AT+DOL**
626 +
627 +(% border="1" cellspacing="4" style="width:571.818px" %)
628 +|(% style="width:172px;background-color:#4F81BD;color:white" %)**Command Example**|(% style="width:279px;background-color:#4F81BD;color:white" %)**Function**|(% style="width:118px;background-color:#4F81BD;color:white" %)**Response**
629 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
630 +0,0,0,0,400
631 +
632 +OK
633 +)))
634 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
635 +
636 +
637 +(% border="1" cellspacing="4" style="width:668.818px" %)
638 +|(% rowspan="11" style="width:166px;background-color:#4F81BD;color:white" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits
639 +|(% style="width:251px" %)1:Use upper and lower limits
640 +|(% style="width:251px" %)2:Less than the lower limit
641 +|(% style="width:251px" %)3:Greater than the lower limit
642 +|(% style="width:251px" %)4:Less than the upper limit
643 +|(% style="width:251px" %)5: Greater than the upper limit
644 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
645 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
646 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
647 +|(% style="width:251px" %)1 Person or object counting statistics
648 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
649 +0~~10000ms
650 +
651 +
652 +)))
653 +
654 +(% style="color:blue" %)**Downlink Command: 0x07**
655 +
656 +Format: Command Code (0x07) followed by 9bytes.
657 +
658 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
659 +
660 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
661 +
662 +
663 +
664 +
695 695  = 4. Battery & Power Consumption =
696 696  
697 697  
698 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
668 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
699 699  
700 700  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
701 701  
... ... @@ -704,7 +704,7 @@
704 704  
705 705  
706 706  (% class="wikigeneratedid" %)
707 -User can change firmware LDS12-LB to:
677 +User can change firmware DS20L to:
708 708  
709 709  * Change Frequency band/ region.
710 710  
... ... @@ -712,7 +712,7 @@
712 712  
713 713  * Fix bugs.
714 714  
715 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
685 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
716 716  
717 717  Methods to Update Firmware:
718 718  
... ... @@ -722,10 +722,10 @@
722 722  
723 723  = 6. FAQ =
724 724  
725 -== 6.1 What is the frequency plan for LDS12-LB? ==
695 +== 6.1 What is the frequency plan for DS20L? ==
726 726  
727 727  
728 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
698 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
729 729  
730 730  
731 731  = 7. Trouble Shooting =
... ... @@ -740,11 +740,11 @@
740 740  
741 741  
742 742  (((
743 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
713 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
744 744  )))
745 745  
746 746  (((
747 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
717 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
748 748  )))
749 749  
750 750  
... ... @@ -753,7 +753,7 @@
753 753  )))
754 754  
755 755  (((
756 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
726 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
757 757  )))
758 758  
759 759  
... ... @@ -760,7 +760,7 @@
760 760  = 8. Order Info =
761 761  
762 762  
763 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
733 +Part Number: (% style="color:blue" %)**DS20L-XXX**
764 764  
765 765  (% style="color:red" %)**XXX**(%%): **The default frequency band**
766 766  
... ... @@ -785,7 +785,7 @@
785 785  
786 786  (% style="color:#037691" %)**Package Includes**:
787 787  
788 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
758 +* DS20L LoRaWAN Smart Distance Detector x 1
789 789  
790 790  (% style="color:#037691" %)**Dimension and weight**:
791 791  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content