Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.21
edited by Xiaoling
on 2023/06/14 17:52
Change comment: There is no comment for this version
To version 80.5
edited by Xiaoling
on 2023/06/14 16:21
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,18 +44,19 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
56 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  
58 -
59 59  == 1.3 Specification ==
60 60  
61 61  
... ... @@ -64,23 +64,6 @@
64 64  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 65  * Operating Temperature: -40 ~~ 85°C
66 66  
67 -(% style="color:#037691" %)**Probe Specification:**
68 -
69 -* Storage temperature:-20℃~~75℃
70 -* Operating temperature : -20℃~~60℃
71 -* Measure Distance:
72 -** 0.1m ~~ 12m @ 90% Reflectivity
73 -** 0.1m ~~ 4m @ 10% Reflectivity
74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution : 5mm
76 -* Ambient light immunity : 70klux
77 -* Enclosure rating : IP65
78 -* Light source : LED
79 -* Central wavelength : 850nm
80 -* FOV : 3.6°
81 -* Material of enclosure : ABS+PC
82 -* Wire length : 25cm
83 -
84 84  (% style="color:#037691" %)**LoRa Spec:**
85 85  
86 86  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -102,23 +102,137 @@
102 102  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103 103  
104 104  
89 +== 1.4 Suitable Container & Liquid ==
105 105  
106 -== 1.4 Applications ==
107 107  
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
108 108  
109 -* Horizontal distance measurement
110 -* Parking management system
111 -* Object proximity and presence detection
112 -* Intelligent trash can management system
113 -* Robot obstacle avoidance
114 -* Automatic control
115 -* Sewer
116 116  
100 +(% style="display:none" %)
117 117  
102 +== 1.5 Install LDS12-LB ==
118 118  
104 +
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
106 +
107 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 +
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
110 +
111 +
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
115 +
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 +)))
119 +
120 +[[image:image-20230613143052-5.png]]
121 +
122 +
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
124 +
125 +[[image:image-20230613143125-6.png]]
126 +
127 +
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
131 +
132 +(((
133 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
135 +
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
138 +)))
139 +
140 +(((
141 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
143 +
144 +
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
148 +
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
152 +
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
159 +
160 +(((
161 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
163 +
164 +
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
168 +
169 +
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
173 +
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
177 +
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
181 +
182 +(((
183 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
184 +)))
185 +
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
187 +
188 +
189 +(((
190 +(% style="color:red" %)**Note :**
191 +
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
194 +
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
198 +
199 +
200 +== 1.6 Applications ==
201 +
202 +
203 +* Smart liquid control solution
204 +
205 +* Smart liquefied gas solution
206 +
207 +
208 +== 1.7 Precautions ==
209 +
210 +
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
212 +
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
214 +
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
216 +
119 119  (% style="display:none" %)
120 120  
121 -== 1.5 Sleep mode and working mode ==
219 +== 1.8 Sleep mode and working mode ==
122 122  
123 123  
124 124  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
... ... @@ -126,7 +126,7 @@
126 126  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127 127  
128 128  
129 -== 1.6 Button & LEDs ==
227 +== 1.9 Button & LEDs ==
130 130  
131 131  
132 132  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -146,10 +146,9 @@
146 146  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 147  
148 148  
247 +== 1.10 BLE connection ==
149 149  
150 -== 1.7 BLE connection ==
151 151  
152 -
153 153  LDS12-LB support BLE remote configure.
154 154  
155 155  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -161,12 +161,12 @@
161 161  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162 162  
163 163  
164 -== 1.8 Pin Definitions ==
261 +== 1.11 Pin Definitions ==
165 165  
166 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
263 +[[image:image-20230523174230-1.png]]
167 167  
168 168  
169 -== 1.9 Mechanical ==
266 +== 1.12 Mechanical ==
170 170  
171 171  
172 172  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -180,10 +180,12 @@
180 180  
181 181  (% style="color:blue" %)**Probe Mechanical:**
182 182  
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
183 183  
184 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
185 185  
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
186 186  
285 +
187 187  = 2. Configure LDS12-LB to connect to LoRaWAN network =
188 188  
189 189  == 2.1 How it works ==
... ... @@ -200,7 +200,7 @@
200 200  
201 201  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
202 202  
203 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
204 204  
205 205  
206 206  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -244,7 +244,7 @@
244 244  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
245 245  
246 246  
247 -== 2.3 ​Uplink Payload ==
346 +== 2.3  ​Uplink Payload ==
248 248  
249 249  
250 250  (((
... ... @@ -252,25 +252,24 @@
252 252  )))
253 253  
254 254  (((
255 -Uplink payload includes in total 11 bytes.
354 +Uplink payload includes in total 8 bytes.
256 256  )))
257 257  
258 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
259 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
260 260  **Size(bytes)**
261 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
262 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
263 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
264 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
265 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
266 -)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
267 -[[Message Type>>||anchor="H2.3.7MessageType"]]
268 -)))
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
269 269  
270 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
271 271  
272 272  
273 -=== 2.3.1 Battery Info ===
371 +=== 2.3.1  Battery Info ===
274 274  
275 275  
276 276  Check the battery voltage for LDS12-LB.
... ... @@ -280,50 +280,29 @@
280 280  Ex2: 0x0B49 = 2889mV
281 281  
282 282  
283 -=== 2.3.2 DS18B20 Temperature sensor ===
381 +=== 2.3.2  Distance ===
284 284  
285 285  
286 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
384 +(((
385 +Get the distance. Flat object range 20mm - 2000mm.
386 +)))
287 287  
388 +(((
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
288 288  
289 -**Example**:
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
392 +)))
290 290  
291 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
292 292  
293 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
294 294  
295 295  
296 -=== 2.3.3 Distance ===
399 +=== 2.3.3  Interrupt Pin ===
297 297  
298 298  
299 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
300 -
301 -
302 -**Example**:
303 -
304 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
305 -
306 -
307 -=== 2.3.4 Distance signal strength ===
308 -
309 -
310 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
311 -
312 -
313 -**Example**:
314 -
315 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
316 -
317 -Customers can judge whether they need to adjust the environment based on the signal strength.
318 -
319 -
320 -=== 2.3.5 Interrupt Pin ===
321 -
322 -
323 323  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
324 324  
325 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
326 -
327 327  **Example:**
328 328  
329 329  0x00: Normal uplink packet.
... ... @@ -331,56 +331,51 @@
331 331  0x01: Interrupt Uplink Packet.
332 332  
333 333  
334 -=== 2.3.6 LiDAR temp ===
411 +=== 2.3. DS18B20 Temperature sensor ===
335 335  
336 336  
337 -Characterize the internal temperature value of the sensor.
414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
338 338  
339 -**Example: **
340 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
341 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
416 +**Example**:
342 342  
418 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
343 343  
344 -=== 2.3.7 Message Type ===
420 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
345 345  
346 346  
423 +=== 2.3.5  Sensor Flag ===
424 +
425 +
347 347  (((
348 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
349 349  )))
350 350  
351 351  (((
352 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
353 353  )))
354 354  
355 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
356 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
357 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
358 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
359 359  
360 -=== 2.3.8 Decode payload in The Things Network ===
435 +=== 2.3.6  Decode payload in The Things Network ===
361 361  
362 362  
363 363  While using TTN network, you can add the payload format to decode the payload.
364 364  
365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
366 366  
442 +The payload decoder function for TTN V3 is here:
367 367  
368 368  (((
369 -The payload decoder function for TTN is here:
445 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
370 370  )))
371 371  
372 -(((
373 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
374 -)))
375 375  
449 +== 2.4  Uplink Interval ==
376 376  
377 -== 2.4 Uplink Interval ==
378 378  
379 -
380 380  The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
381 381  
382 382  
383 -== 2.5 ​Show Data in DataCake IoT Server ==
455 +== 2.5  ​Show Data in DataCake IoT Server ==
384 384  
385 385  
386 386  (((
... ... @@ -500,94 +500,6 @@
500 500  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
501 501  
502 502  
503 -== 2.8 LiDAR ToF Measurement ==
504 -
505 -=== 2.8.1 Principle of Distance Measurement ===
506 -
507 -
508 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
509 -
510 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
511 -
512 -
513 -=== 2.8.2 Distance Measurement Characteristics ===
514 -
515 -
516 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
517 -
518 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
519 -
520 -
521 -(((
522 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
523 -)))
524 -
525 -(((
526 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
527 -)))
528 -
529 -(((
530 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
531 -)))
532 -
533 -
534 -(((
535 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
536 -)))
537 -
538 -
539 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
540 -
541 -
542 -(((
543 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
544 -)))
545 -
546 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
547 -
548 -(((
549 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
550 -)))
551 -
552 -
553 -=== 2.8.3 Notice of usage ===
554 -
555 -
556 -Possible invalid /wrong reading for LiDAR ToF tech:
557 -
558 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
559 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
560 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
561 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
562 -
563 -
564 -=== 2.8.4  Reflectivity of different objects ===
565 -
566 -
567 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
568 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
569 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
570 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
571 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
572 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
573 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
574 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
575 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
576 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
577 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
578 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
579 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
580 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
581 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
582 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
583 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
584 -Unpolished white metal surface
585 -)))|(% style="width:93px" %)130%
586 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
587 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
588 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
589 -
590 -
591 591  = 3. Configure LDS12-LB =
592 592  
593 593  == 3.1 Configure Methods ==
... ... @@ -634,7 +634,7 @@
634 634  )))
635 635  
636 636  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
637 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
638 638  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
639 639  30000
640 640  OK
... ... @@ -662,6 +662,9 @@
662 662  )))
663 663  * (((
664 664  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
649 +
650 +
651 +
665 665  )))
666 666  
667 667  === 3.3.2 Set Interrupt Mode ===
... ... @@ -674,7 +674,7 @@
674 674  (% style="color:blue" %)**AT Command: AT+INTMOD**
675 675  
676 676  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
677 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
678 678  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
679 679  0
680 680  OK
... ... @@ -699,84 +699,6 @@
699 699  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
700 700  
701 701  
702 -
703 -=== 3.3.3 Get Firmware Version Info ===
704 -
705 -
706 -Feature: use downlink to get firmware version.
707 -
708 -(% style="color:blue" %)**Downlink Command: 0x26**
709 -
710 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
711 -|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)**
712 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
713 -
714 -* Reply to the confirmation package: 26 01
715 -* Reply to non-confirmed packet: 26 00
716 -
717 -Device will send an uplink after got this downlink command. With below payload:
718 -
719 -Configures info payload:
720 -
721 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
722 -|=(% style="background-color:#4F81BD;color:white" %)(((
723 -**Size(bytes)**
724 -)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
725 -|**Value**|Software Type|(((
726 -Frequency Band
727 -)))|Sub-band|(((
728 -Firmware Version
729 -)))|Sensor Type|Reserve|(((
730 -[[Message Type>>||anchor="H2.3.7MessageType"]]
731 -Always 0x02
732 -)))
733 -
734 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
735 -
736 -(% style="color:#037691" %)**Frequency Band**:
737 -
738 -*0x01: EU868
739 -
740 -*0x02: US915
741 -
742 -*0x03: IN865
743 -
744 -*0x04: AU915
745 -
746 -*0x05: KZ865
747 -
748 -*0x06: RU864
749 -
750 -*0x07: AS923
751 -
752 -*0x08: AS923-1
753 -
754 -*0x09: AS923-2
755 -
756 -*0xa0: AS923-3
757 -
758 -
759 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
760 -
761 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
762 -
763 -(% style="color:#037691" %)**Sensor Type**:
764 -
765 -0x01: LSE01
766 -
767 -0x02: LDDS75
768 -
769 -0x03: LDDS20
770 -
771 -0x04: LLMS01
772 -
773 -0x05: LSPH01
774 -
775 -0x06: LSNPK01
776 -
777 -0x07: LLDS12
778 -
779 -
780 780  = 4. Battery & Power Consumption =
781 781  
782 782  
... ... @@ -797,7 +797,7 @@
797 797  
798 798  * Fix bugs.
799 799  
800 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
801 801  
802 802  Methods to Update Firmware:
803 803  
... ... @@ -826,11 +826,11 @@
826 826  
827 827  
828 828  (((
829 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
738 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
830 830  )))
831 831  
832 832  (((
833 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
742 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
834 834  )))
835 835  
836 836  
... ... @@ -839,7 +839,7 @@
839 839  )))
840 840  
841 841  (((
842 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
751 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
843 843  )))
844 844  
845 845  
... ... @@ -866,6 +866,7 @@
866 866  
867 867  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
868 868  
778 +
869 869  = 9. ​Packing Info =
870 870  
871 871  
... ... @@ -883,6 +883,7 @@
883 883  
884 884  * Weight / pcs : g
885 885  
796 +
886 886  = 10. Support =
887 887  
888 888  
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content