Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -35,7 +35,7 @@ 35 35 36 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 4162334-2.png||height="468" width="800"]]38 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,18 +44,19 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 47 +* Liquid Level Measurement by Ultrasonic technology 48 +* Measure through container, No need to contact Liquid 49 +* Valid level range 20mm - 2000mm 50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 51 +* Cable Length : 25cm 51 51 * Support Bluetooth v5.1 and LoRaWAN remote configure 52 52 * Support wireless OTA update firmware 53 53 * AT Commands to change parameters 54 54 * Downlink to change configure 56 +* IP66 Waterproof Enclosure 55 55 * 8500mAh Battery for long term use 56 56 57 57 58 - 59 59 == 1.3 Specification == 60 60 61 61 ... ... @@ -64,23 +64,6 @@ 64 64 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 65 65 * Operating Temperature: -40 ~~ 85°C 66 66 67 -(% style="color:#037691" %)**Probe Specification:** 68 - 69 -* Storage temperature:-20℃~~75℃ 70 -* Operating temperature : -20℃~~60℃ 71 -* Measure Distance: 72 -** 0.1m ~~ 12m @ 90% Reflectivity 73 -** 0.1m ~~ 4m @ 10% Reflectivity 74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution : 5mm 76 -* Ambient light immunity : 70klux 77 -* Enclosure rating : IP65 78 -* Light source : LED 79 -* Central wavelength : 850nm 80 -* FOV : 3.6° 81 -* Material of enclosure : ABS+PC 82 -* Wire length : 25cm 83 - 84 84 (% style="color:#037691" %)**LoRa Spec:** 85 85 86 86 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -102,23 +102,137 @@ 102 102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 103 103 104 104 89 +== 1.4 Suitable Container & Liquid == 105 105 106 -== 1.4 Applications == 107 107 92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 93 +* Container shape is regular, and surface is smooth. 94 +* Container Thickness: 95 +** Pure metal material. 2~~8mm, best is 3~~5mm 96 +** Pure non metal material: <10 mm 97 +* Pure liquid without irregular deposition. 108 108 109 -* Horizontal distance measurement 110 -* Parking management system 111 -* Object proximity and presence detection 112 -* Intelligent trash can management system 113 -* Robot obstacle avoidance 114 -* Automatic control 115 -* Sewer 116 116 100 +(% style="display:none" %) 117 117 102 +== 1.5 Install DDS20-LB == 118 118 104 + 105 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 106 + 107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 108 + 109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 110 + 111 + 112 +((( 113 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 114 +))) 115 + 116 +((( 117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 118 +))) 119 + 120 +[[image:image-20230613143052-5.png]] 121 + 122 + 123 +No polish needed if the container is shine metal surface without paint or non-metal container. 124 + 125 +[[image:image-20230613143125-6.png]] 126 + 127 + 128 +((( 129 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 130 +))) 131 + 132 +((( 133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 134 +))) 135 + 136 +((( 137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 138 +))) 139 + 140 +((( 141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 142 +))) 143 + 144 + 145 +((( 146 +(% style="color:blue" %)**LED Status:** 147 +))) 148 + 149 +* ((( 150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 151 +))) 152 + 153 +* ((( 154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 155 +))) 156 +* ((( 157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 158 +))) 159 + 160 +((( 161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 162 +))) 163 + 164 + 165 +((( 166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 167 +))) 168 + 169 + 170 +((( 171 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 172 +))) 173 + 174 +((( 175 +Prepare Eproxy AB glue. 176 +))) 177 + 178 +((( 179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 180 +))) 181 + 182 +((( 183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 184 +))) 185 + 186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 187 + 188 + 189 +((( 190 +(% style="color:red" %)**Note :** 191 + 192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 193 +))) 194 + 195 +((( 196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 197 +))) 198 + 199 + 200 +== 1.6 Applications == 201 + 202 + 203 +* Smart liquid control solution 204 + 205 +* Smart liquefied gas solution 206 + 207 + 208 +== 1.7 Precautions == 209 + 210 + 211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 212 + 213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 214 + 215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 216 + 119 119 (% style="display:none" %) 120 120 121 -== 1. 5Sleep mode and working mode ==219 +== 1.8 Sleep mode and working mode == 122 122 123 123 124 124 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. ... ... @@ -126,7 +126,7 @@ 126 126 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 127 127 128 128 129 -== 1. 6Button & LEDs ==227 +== 1.9 Button & LEDs == 130 130 131 131 132 132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -146,12 +146,11 @@ 146 146 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 147 147 148 148 247 +== 1.10 BLE connection == 149 149 150 -== 1.7 BLE connection == 151 151 250 +DDS20-LB support BLE remote configure. 152 152 153 -LDS12-LB support BLE remote configure. 154 - 155 155 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 156 156 157 157 * Press button to send an uplink ... ... @@ -161,12 +161,12 @@ 161 161 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 162 162 163 163 164 -== 1. 8Pin Definitions ==261 +== 1.11 Pin Definitions == 165 165 166 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]263 +[[image:image-20230523174230-1.png]] 167 167 168 168 169 -== 1. 9Mechanical ==266 +== 1.12 Mechanical == 170 170 171 171 172 172 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -180,16 +180,18 @@ 180 180 181 181 (% style="color:blue" %)**Probe Mechanical:** 182 182 280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 183 183 184 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 185 185 283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 186 186 187 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 188 188 286 += 2. Configure DDS20-LB to connect to LoRaWAN network = 287 + 189 189 == 2.1 How it works == 190 190 191 191 192 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate theLDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 193 193 194 194 (% style="display:none" %) (%%) 195 195 ... ... @@ -200,12 +200,12 @@ 200 200 201 201 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 202 202 203 -[[image:image-202306141 62359-3.png||height="468" width="800"]](% style="display:none" %)302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 204 204 205 205 206 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 207 207 208 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 209 209 210 210 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 211 211 ... ... @@ -234,10 +234,10 @@ 234 234 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 235 235 236 236 237 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 238 238 239 239 240 -Press the button for 5 seconds to activate the LDS12-LB.339 +Press the button for 5 seconds to activate the DDS20-LB. 241 241 242 242 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 243 243 ... ... @@ -244,36 +244,35 @@ 244 244 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 245 245 246 246 247 -== 2.3 Uplink Payload == 346 +== 2.3 Uplink Payload == 248 248 249 249 250 250 ((( 251 - LDS12-LB will uplink payload via LoRaWAN with below payload format:350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 252 252 ))) 253 253 254 254 ((( 255 -Uplink payload includes in total 11bytes.354 +Uplink payload includes in total 8 bytes. 256 256 ))) 257 257 258 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)259 -|=(% style="width: 62.5px;background-color:# 4F81BD;color:white" %)(((357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 260 260 **Size(bytes)** 261 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1** 262 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 263 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 264 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|((( 265 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 266 -)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|((( 267 -[[Message Type>>||anchor="H2.3.7MessageType"]] 268 -))) 360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 362 +[[Distance>>||anchor="H2.3.2A0Distance"]] 363 +(unit: mm) 364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 269 269 270 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 271 271 272 272 273 -=== 2.3.1 Battery Info === 371 +=== 2.3.1 Battery Info === 274 274 275 275 276 -Check the battery voltage for LDS12-LB.374 +Check the battery voltage for DDS20-LB. 277 277 278 278 Ex1: 0x0B45 = 2885mV 279 279 ... ... @@ -280,50 +280,29 @@ 280 280 Ex2: 0x0B49 = 2889mV 281 281 282 282 283 -=== 2.3.2 D S18B20 Temperaturesensor===381 +=== 2.3.2 Distance === 284 284 285 285 286 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 384 +((( 385 +Get the distance. Flat object range 20mm - 2000mm. 386 +))) 287 287 388 +((( 389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 288 288 289 -**Example**: 391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 392 +))) 290 290 291 -If payloadis:0105H: (0105 & FC00==0),temp=0105H /10 = 26.1degree394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 292 292 293 -If payloadis:FF3FH:(FF3F& FC00==1), temp=(FF3FH-65536)/10= -19.3degrees.396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 294 294 295 295 296 -=== 2.3.3 Distance ===399 +=== 2.3.3 Interrupt Pin === 297 297 298 298 299 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 300 - 301 - 302 -**Example**: 303 - 304 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 305 - 306 - 307 -=== 2.3.4 Distance signal strength === 308 - 309 - 310 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 311 - 312 - 313 -**Example**: 314 - 315 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 316 - 317 -Customers can judge whether they need to adjust the environment based on the signal strength. 318 - 319 - 320 -=== 2.3.5 Interrupt Pin === 321 - 322 - 323 323 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 324 324 325 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 326 - 327 327 **Example:** 328 328 329 329 0x00: Normal uplink packet. ... ... @@ -331,58 +331,53 @@ 331 331 0x01: Interrupt Uplink Packet. 332 332 333 333 334 -=== 2.3. 6LiDARtemp ===411 +=== 2.3.4 DS18B20 Temperature sensor === 335 335 336 336 337 - Characterizetheinternaltemperature valueofthesensor.414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 338 338 339 -**Example: ** 340 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 341 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 416 +**Example**: 342 342 418 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 343 343 344 -=== 2.3.7MessageType===420 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 345 345 346 346 423 +=== 2.3.5 Sensor Flag === 424 + 425 + 347 347 ((( 348 - Fora normal uplink payload, themessagetypeis always0x01.427 +0x01: Detect Ultrasonic Sensor 349 349 ))) 350 350 351 351 ((( 352 - ValidMessage Type:431 +0x00: No Ultrasonic Sensor 353 353 ))) 354 354 355 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 356 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 357 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 358 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 359 359 360 -=== 2.3. 8Decode payload in The Things Network ===435 +=== 2.3.6 Decode payload in The Things Network === 361 361 362 362 363 363 While using TTN network, you can add the payload format to decode the payload. 364 364 365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 366 366 442 +The payload decoder function for TTN V3 is here: 367 367 368 368 ((( 369 -T hepayloaddecoderfunctionforTTNis here:445 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 370 370 ))) 371 371 372 -((( 373 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 374 -))) 375 375 449 +== 2.4 Uplink Interval == 376 376 377 -== 2.4 Uplink Interval == 378 378 452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 379 379 380 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 381 381 455 +== 2.5 Show Data in DataCake IoT Server == 382 382 383 -== 2.5 Show Data in DataCake IoT Server == 384 384 385 - 386 386 ((( 387 387 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 388 388 ))) ... ... @@ -405,7 +405,7 @@ 405 405 406 406 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 407 407 408 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 409 409 410 410 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 411 411 ... ... @@ -418,19 +418,19 @@ 418 418 == 2.6 Datalog Feature == 419 419 420 420 421 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 422 422 423 423 424 424 === 2.6.1 Ways to get datalog via LoRaWAN === 425 425 426 426 427 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 428 428 429 429 * ((( 430 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 431 431 ))) 432 432 * ((( 433 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 434 434 ))) 435 435 436 436 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -441,7 +441,7 @@ 441 441 === 2.6.2 Unix TimeStamp === 442 442 443 443 444 - LDS12-LB uses Unix TimeStamp format based on516 +DDS20-LB uses Unix TimeStamp format based on 445 445 446 446 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 447 447 ... ... @@ -460,7 +460,7 @@ 460 460 461 461 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 462 462 463 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 464 464 465 465 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 466 466 ... ... @@ -488,7 +488,7 @@ 488 488 ))) 489 489 490 490 ((( 491 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 492 492 ))) 493 493 494 494 ... ... @@ -495,105 +495,17 @@ 495 495 == 2.7 Frequency Plans == 496 496 497 497 498 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 499 499 500 500 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 501 501 502 502 503 -= =2.8LiDAR ToF Measurement==575 += 3. Configure DDS20-LB = 504 504 505 -=== 2.8.1 Principle of Distance Measurement === 506 - 507 - 508 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 509 - 510 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 511 - 512 - 513 -=== 2.8.2 Distance Measurement Characteristics === 514 - 515 - 516 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 517 - 518 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 519 - 520 - 521 -((( 522 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 523 -))) 524 - 525 -((( 526 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 527 -))) 528 - 529 -((( 530 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 531 -))) 532 - 533 - 534 -((( 535 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 536 -))) 537 - 538 - 539 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 540 - 541 - 542 -((( 543 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 544 -))) 545 - 546 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 547 - 548 -((( 549 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 550 -))) 551 - 552 - 553 -=== 2.8.3 Notice of usage === 554 - 555 - 556 -Possible invalid /wrong reading for LiDAR ToF tech: 557 - 558 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 559 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 560 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 561 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 562 - 563 - 564 -=== 2.8.4 Reflectivity of different objects === 565 - 566 - 567 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 568 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 569 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 570 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 571 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 572 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 573 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 574 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 575 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 576 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 577 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 578 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 579 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 580 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 581 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 582 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 583 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 584 -Unpolished white metal surface 585 -)))|(% style="width:93px" %)130% 586 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 587 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 588 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 589 - 590 - 591 -= 3. Configure LDS12-LB = 592 - 593 593 == 3.1 Configure Methods == 594 594 595 595 596 - LDS12-LB supports below configure method:580 +DDS20-LB supports below configure method: 597 597 598 598 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 599 599 ... ... @@ -616,10 +616,10 @@ 616 616 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 617 617 618 618 619 -== 3.3 Commands special design for LDS12-LB ==603 +== 3.3 Commands special design for DDS20-LB == 620 620 621 621 622 -These commands only valid for LDS12-LB, as below:606 +These commands only valid for DDS20-LB, as below: 623 623 624 624 625 625 === 3.3.1 Set Transmit Interval Time === ... ... @@ -634,7 +634,7 @@ 634 634 ))) 635 635 636 636 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 637 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 638 638 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 639 639 30000 640 640 OK ... ... @@ -662,6 +662,9 @@ 662 662 ))) 663 663 * ((( 664 664 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 649 + 650 + 651 + 665 665 ))) 666 666 667 667 === 3.3.2 Set Interrupt Mode === ... ... @@ -674,7 +674,7 @@ 674 674 (% style="color:blue" %)**AT Command: AT+INTMOD** 675 675 676 676 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 677 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 678 678 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 679 679 0 680 680 OK ... ... @@ -699,88 +699,10 @@ 699 699 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 700 700 701 701 702 - 703 -=== 3.3.3 Get Firmware Version Info === 704 - 705 - 706 -Feature: use downlink to get firmware version. 707 - 708 -(% style="color:blue" %)**Downlink Command: 0x26** 709 - 710 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 711 -|(% style="background-color:#4f81bd; color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4f81bd; color:white; width:57px" %)**FPort**|(% style="background-color:#4f81bd; color:white; width:91px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Downlink payload size(bytes)** 712 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 713 - 714 -* Reply to the confirmation package: 26 01 715 -* Reply to non-confirmed packet: 26 00 716 - 717 -Device will send an uplink after got this downlink command. With below payload: 718 - 719 -Configures info payload: 720 - 721 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 722 -|=(% style="background-color:#4F81BD;color:white" %)((( 723 -**Size(bytes)** 724 -)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1** 725 -|**Value**|Software Type|((( 726 -Frequency Band 727 -)))|Sub-band|((( 728 -Firmware Version 729 -)))|Sensor Type|Reserve|((( 730 -[[Message Type>>||anchor="H2.3.7MessageType"]] 731 -Always 0x02 732 -))) 733 - 734 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 735 - 736 -(% style="color:#037691" %)**Frequency Band**: 737 - 738 -*0x01: EU868 739 - 740 -*0x02: US915 741 - 742 -*0x03: IN865 743 - 744 -*0x04: AU915 745 - 746 -*0x05: KZ865 747 - 748 -*0x06: RU864 749 - 750 -*0x07: AS923 751 - 752 -*0x08: AS923-1 753 - 754 -*0x09: AS923-2 755 - 756 -*0xa0: AS923-3 757 - 758 - 759 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 760 - 761 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 762 - 763 -(% style="color:#037691" %)**Sensor Type**: 764 - 765 -0x01: LSE01 766 - 767 -0x02: LDDS75 768 - 769 -0x03: LDDS20 770 - 771 -0x04: LLMS01 772 - 773 -0x05: LSPH01 774 - 775 -0x06: LSNPK01 776 - 777 -0x07: LLDS12 778 - 779 - 780 780 = 4. Battery & Power Consumption = 781 781 782 782 783 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 784 784 785 785 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 786 786 ... ... @@ -789,7 +789,7 @@ 789 789 790 790 791 791 (% class="wikigeneratedid" %) 792 -User can change firmware LDS12-LB to:701 +User can change firmware DDS20-LB to: 793 793 794 794 * Change Frequency band/ region. 795 795 ... ... @@ -797,7 +797,7 @@ 797 797 798 798 * Fix bugs. 799 799 800 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 801 801 802 802 Methods to Update Firmware: 803 803 ... ... @@ -808,38 +808,39 @@ 808 808 809 809 = 6. FAQ = 810 810 811 -== 6.1 What is the frequency plan for LDS12-LB? ==720 +== 6.1 What is the frequency plan for DDS20-LB? == 812 812 813 813 814 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 815 815 816 816 817 -= 7.Trouble Shooting=726 +== 6.2 Can I use DDS20-LB in condensation environment? == 818 818 819 -== 7.1 AT Command input doesn't work == 820 820 729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 821 821 822 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 823 823 732 += 7. Trouble Shooting = 824 824 825 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==734 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 826 826 827 827 828 -((( 829 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 830 -))) 737 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 831 831 832 -((( 833 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 834 -))) 835 835 740 +== 7.2 AT Command input doesn't work == 836 836 837 -((( 838 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 839 -))) 840 840 743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 744 + 745 + 746 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 747 + 748 + 841 841 ((( 842 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 751 + 752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 843 843 ))) 844 844 845 845 ... ... @@ -846,7 +846,7 @@ 846 846 = 8. Order Info = 847 847 848 848 849 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 850 850 851 851 (% style="color:red" %)**XXX**(%%): **The default frequency band** 852 852 ... ... @@ -866,12 +866,13 @@ 866 866 867 867 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 868 868 779 + 869 869 = 9. Packing Info = 870 870 871 871 872 872 (% style="color:#037691" %)**Package Includes**: 873 873 874 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 875 875 876 876 (% style="color:#037691" %)**Dimension and weight**: 877 877 ... ... @@ -883,6 +883,7 @@ 883 883 884 884 * Weight / pcs : g 885 885 797 + 886 886 = 10. Support = 887 887 888 888
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content