Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -35,7 +35,7 @@ 35 35 36 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 4162334-2.png||height="468" width="800"]]38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -158,7 +158,6 @@ 158 158 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 159 159 160 160 161 - 162 162 == 1.9 Mechanical == 163 163 164 164 ... ... @@ -174,7 +174,6 @@ 174 174 (% style="color:blue" %)**Probe Mechanical:** 175 175 176 176 177 - 178 178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 179 179 180 180 ... ... @@ -194,7 +194,7 @@ 194 194 195 195 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 196 196 197 -[[image:image-2023061 4162359-3.png||height="468" width="800"]](% style="display:none" %)195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 198 198 199 199 200 200 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -241,6 +241,75 @@ 241 241 == 2.3 Uplink Payload == 242 242 243 243 242 +=== 2.3.1 Device Status, FPORT~=5 === 243 + 244 + 245 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 246 + 247 +The Payload format is as below. 248 + 249 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 250 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 251 +**Size(bytes)** 252 +)))|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 94px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 91px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 60px;" %)**2** 253 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 254 + 255 +Example parse in TTNv3 256 + 257 +**Sensor Model**: For LDS12-LB, this value is 0x24 258 + 259 +**Firmware Version**: 0x0100, Means: v1.0.0 version 260 + 261 +**Frequency Band**: 262 + 263 +0x01: EU868 264 + 265 +0x02: US915 266 + 267 +0x03: IN865 268 + 269 +0x04: AU915 270 + 271 +0x05: KZ865 272 + 273 +0x06: RU864 274 + 275 +0x07: AS923 276 + 277 +0x08: AS923-1 278 + 279 +0x09: AS923-2 280 + 281 +0x0a: AS923-3 282 + 283 +0x0b: CN470 284 + 285 +0x0c: EU433 286 + 287 +0x0d: KR920 288 + 289 +0x0e: MA869 290 + 291 +**Sub-Band**: 292 + 293 +AU915 and US915:value 0x00 ~~ 0x08 294 + 295 +CN470: value 0x0B ~~ 0x0C 296 + 297 +Other Bands: Always 0x00 298 + 299 +**Battery Info**: 300 + 301 +Check the battery voltage. 302 + 303 +Ex1: 0x0B45 = 2885mV 304 + 305 +Ex2: 0x0B49 = 2889mV 306 + 307 + 308 +=== 2.3.2 Uplink Payload, FPORT~=2 === 309 + 310 + 244 244 ((( 245 245 LDS12-LB will uplink payload via LoRaWAN with below payload format: 246 246 ))) ... ... @@ -249,15 +249,19 @@ 249 249 Uplink payload includes in total 11 bytes. 250 250 ))) 251 251 252 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 510px" %)319 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:670px" %) 253 253 |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 254 254 **Size(bytes)** 255 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: #4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**256 -|(% style="width:62.5px" %) **Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((322 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 122px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 54px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 96px;" %)**1** 323 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 257 257 [[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 258 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|((( 259 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 260 -)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|((( 325 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(% style="width:122px" %)((( 326 +[[Interrupt flag>>]] 327 + 328 +[[&>>]] 329 + 330 +[[Interrupt_level>>]] 331 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(% style="width:96px" %)((( 261 261 [[Message Type>>||anchor="H2.3.7MessageType"]] 262 262 ))) 263 263 ... ... @@ -264,7 +264,7 @@ 264 264 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 265 265 266 266 267 -=== 2.3. 1Battery Info ===338 +==== 2.3.2.a Battery Info ==== 268 268 269 269 270 270 Check the battery voltage for LDS12-LB. ... ... @@ -274,7 +274,7 @@ 274 274 Ex2: 0x0B49 = 2889mV 275 275 276 276 277 -=== 2.3.2 DS18B20 Temperature sensor === 348 +==== 2.3.2.b DS18B20 Temperature sensor ==== 278 278 279 279 280 280 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. ... ... @@ -287,7 +287,7 @@ 287 287 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 288 288 289 289 290 -=== 2.3. 3Distance ===361 +==== 2.3.2.c Distance ==== 291 291 292 292 293 293 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. ... ... @@ -298,7 +298,7 @@ 298 298 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 299 299 300 300 301 -=== 2.3. 4Distance signal strength ===372 +==== 2.3.2.d Distance signal strength ==== 302 302 303 303 304 304 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. ... ... @@ -311,7 +311,7 @@ 311 311 Customers can judge whether they need to adjust the environment based on the signal strength. 312 312 313 313 314 -=== 2.3. 5Interrupt Pin ===385 +==== 2.3.2.e Interrupt Pin & Interrupt Level ==== 315 315 316 316 317 317 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. ... ... @@ -325,7 +325,7 @@ 325 325 0x01: Interrupt Uplink Packet. 326 326 327 327 328 -=== 2.3. 6LiDAR temp ===399 +==== 2.3.2.f LiDAR temp ==== 329 329 330 330 331 331 Characterize the internal temperature value of the sensor. ... ... @@ -335,7 +335,7 @@ 335 335 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 336 336 337 337 338 -=== 2.3. 7Message Type ===409 +==== 2.3.2.g Message Type ==== 339 339 340 340 341 341 ((( ... ... @@ -351,10 +351,9 @@ 351 351 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 352 352 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 353 353 425 +=== 2.3.3 Decode payload in The Things Network === 354 354 355 -=== 2.3.8 Decode payload in The Things Network === 356 356 357 - 358 358 While using TTN network, you can add the payload format to decode the payload. 359 359 360 360 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] ... ... @@ -530,10 +530,8 @@ 530 530 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 531 531 ))) 532 532 533 - 534 534 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 535 535 536 - 537 537 ((( 538 538 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 539 539 ))) ... ... @@ -555,9 +555,6 @@ 555 555 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 556 556 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 557 557 558 - 559 - 560 - 561 561 === 2.8.4 Reflectivity of different objects === 562 562 563 563 ... ... @@ -584,9 +584,6 @@ 584 584 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 585 585 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 586 586 587 - 588 - 589 - 590 590 = 3. Configure LDS12-LB = 591 591 592 592 == 3.1 Configure Methods == ... ... @@ -600,9 +600,6 @@ 600 600 601 601 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 602 602 603 - 604 - 605 - 606 606 == 3.2 General Commands == 607 607 608 608 ... ... @@ -663,6 +663,9 @@ 663 663 ))) 664 664 * ((( 665 665 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 725 + 726 + 727 + 666 666 ))) 667 667 668 668 === 3.3.2 Set Interrupt Mode === ... ... @@ -699,87 +699,33 @@ 699 699 700 700 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 701 701 764 +=== 3.3.3 Set Power Output Duration === 702 702 766 +Control the output duration 3V3 . Before each sampling, device will 703 703 768 +~1. first enable the power output to external sensor, 704 704 770 +2. keep it on as per duration, read sensor value and construct uplink payload 705 705 706 - ===3.3.3 GetFirmwareVersionInfo===772 +3. final, close the power output. 707 707 774 +(% style="color:blue" %)**AT Command: AT+3V3T** 708 708 709 -Feature: use downlink to get firmware version. 776 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 777 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 778 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 779 +OK 780 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 781 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 710 710 711 -(% style="color:blue" %)**Downlink Command: 0x26** 783 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 784 +Format: Command Code (0x07) followed by 3 bytes. 712 712 713 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 714 -|(% style="background-color:#4F81BD;color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4F81BD;color:white; width:57px" %)**FPort**|(% style="background-color:#4F81BD;color:white; width:91px" %)**Type Code**|(% style="background-color:#4F81BD;color:white; width:153px" %)**Downlink payload size(bytes)** 715 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 786 +The first byte is 01,the second and third bytes are the time to turn on. 716 716 717 -* Reply to theconfirmationpackage:2601718 -* Replytonon-confirmedpacket:2600788 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 789 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 719 719 720 -Device will send an uplink after got this downlink command. With below payload: 721 - 722 -Configures info payload: 723 - 724 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 725 -|=(% style="background-color:#4F81BD;color:white" %)((( 726 -**Size(bytes)** 727 -)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1** 728 -|**Value**|Software Type|((( 729 -Frequency Band 730 -)))|Sub-band|((( 731 -Firmware Version 732 -)))|Sensor Type|Reserve|((( 733 -[[Message Type>>||anchor="H2.3.7MessageType"]] 734 -Always 0x02 735 -))) 736 - 737 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 738 - 739 -(% style="color:#037691" %)**Frequency Band**: 740 - 741 -*0x01: EU868 742 - 743 -*0x02: US915 744 - 745 -*0x03: IN865 746 - 747 -*0x04: AU915 748 - 749 -*0x05: KZ865 750 - 751 -*0x06: RU864 752 - 753 -*0x07: AS923 754 - 755 -*0x08: AS923-1 756 - 757 -*0x09: AS923-2 758 - 759 -*0xa0: AS923-3 760 - 761 - 762 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 763 - 764 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 765 - 766 -(% style="color:#037691" %)**Sensor Type**: 767 - 768 -0x01: LSE01 769 - 770 -0x02: LDDS75 771 - 772 -0x03: LDDS20 773 - 774 -0x04: LLMS01 775 - 776 -0x05: LSPH01 777 - 778 -0x06: LSNPK01 779 - 780 -0x07: LLDS12 781 - 782 - 783 783 = 4. Battery & Power Consumption = 784 784 785 785 ... ... @@ -828,11 +828,11 @@ 828 828 829 829 830 830 ((( 831 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 839 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 832 832 ))) 833 833 834 834 ((( 835 -Troubleshooting: Please avoid use of this product under such circumstance in practice. 843 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 836 836 ))) 837 837 838 838 ... ... @@ -841,7 +841,7 @@ 841 841 ))) 842 842 843 843 ((( 844 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 852 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 845 845 ))) 846 846 847 847
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content