Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.20
edited by Xiaoling
on 2023/06/14 17:35
Change comment: There is no comment for this version
To version 113.5
edited by Xiaoling
on 2023/11/10 09:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,253 +18,210 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
66 +(% style="display:none" %)
81 81  
82 -(% style="color:#037691" %)**LoRa Spec:**
83 83  
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
69 += 2. Configure DS20L to connect to LoRaWAN network =
88 88  
89 -(% style="color:#037691" %)**Battery:**
71 +== 2.1 How it works ==
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
74 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
98 98  
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
76 +(% style="display:none" %) (%%)
101 101  
102 -== 1.4 Applications ==
78 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
103 103  
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
81 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
112 112  
113 -(% style="display:none" %)
83 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
114 114  
115 -== 1.5 Sleep mode and working mode ==
85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
116 116  
117 117  
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
119 119  
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
90 +Each LDS12-LB is shipped with a sticker with the default device EUI as below:
121 121  
92 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
122 122  
123 -== 1.6 Button & LEDs ==
124 124  
95 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
125 125  
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 127  
98 +(% style="color:blue" %)**Register the device**
128 128  
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 -)))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
100 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
141 141  
142 -== 1.7 BLE connection ==
143 143  
103 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
144 144  
145 -LDS12-LB support BLE remote configure.
105 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
146 146  
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 148  
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
108 +(% style="color:blue" %)**Add APP EUI in the application**
152 152  
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 154  
111 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
155 155  
156 -== 1.8 Pin Definitions ==
157 157  
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
114 +(% style="color:blue" %)**Add APP KEY**
159 159  
116 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
160 160  
161 161  
162 -== 1.9 Mechanical ==
119 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
163 163  
164 164  
165 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
122 +Press the button for 5 seconds to activate the LDS12-LB.
166 166  
124 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
167 167  
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
126 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
169 169  
170 170  
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
129 +== 2.3 ​Uplink Payload ==
172 172  
131 +=== 2.3.1 Device Status, FPORT~=5 ===
173 173  
174 -(% style="color:blue" %)**Probe Mechanical:**
175 175  
134 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
176 176  
136 +The Payload format is as below.
177 177  
178 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
138 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
139 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
140 +**Size(bytes)**
141 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
142 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
179 179  
144 +Example parse in TTNv3
180 180  
181 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
146 +[[image:image-20230805103904-1.png||height="131" width="711"]]
182 182  
183 -== 2.1 How it works ==
148 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
184 184  
150 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
185 185  
186 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +(% style="color:blue" %)**Frequency Band**:
187 187  
188 -(% style="display:none" %) (%%)
154 +0x01: EU868
189 189  
190 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
156 +0x02: US915
191 191  
158 +0x03: IN865
192 192  
193 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 +0x04: AU915
194 194  
195 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 +0x05: KZ865
196 196  
197 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
164 +0x06: RU864
198 198  
166 +0x07: AS923
199 199  
200 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
168 +0x08: AS923-1
201 201  
202 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
170 +0x09: AS923-2
203 203  
204 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
172 +0x0a: AS923-3
205 205  
174 +0x0b: CN470
206 206  
207 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176 +0x0c: EU433
208 208  
178 +0x0d: KR920
209 209  
210 -(% style="color:blue" %)**Register the device**
180 +0x0e: MA869
211 211  
212 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
182 +(% style="color:blue" %)**Sub-Band**:
213 213  
184 +AU915 and US915:value 0x00 ~~ 0x08
214 214  
215 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
186 +CN470: value 0x0B ~~ 0x0C
216 216  
217 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
188 +Other Bands: Always 0x00
218 218  
190 +(% style="color:blue" %)**Battery Info**:
219 219  
220 -(% style="color:blue" %)**Add APP EUI in the application**
192 +Check the battery voltage.
221 221  
194 +Ex1: 0x0B45 = 2885mV
222 222  
223 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
196 +Ex2: 0x0B49 = 2889mV
224 224  
225 225  
226 -(% style="color:blue" %)**Add APP KEY**
199 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
227 227  
228 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
229 229  
202 +(((
203 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
230 230  
231 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
205 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
232 232  
233 -
234 -Press the button for 5 seconds to activate the LDS12-LB.
235 -
236 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
237 -
238 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
239 -
240 -
241 -== 2.3 ​Uplink Payload ==
242 -
243 -
244 -(((
245 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
207 +Uplink Payload totals 11 bytes.
246 246  )))
247 247  
248 -(((
249 -Uplink payload includes in total 11 bytes.
250 -)))
251 -
252 252  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
253 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
211 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 254  **Size(bytes)**
255 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
256 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
257 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
258 -)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
259 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
260 -)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
261 -[[Message Type>>||anchor="H2.3.7MessageType"]]
213 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
214 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
215 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
216 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
217 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
218 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
219 +[[Message Type>>||anchor="HMessageType"]]
262 262  )))
263 263  
264 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
222 +[[image:image-20230805104104-2.png||height="136" width="754"]]
265 265  
266 266  
267 -=== 2.3.1 Battery Info ===
225 +==== (% style="color:blue" %)**Battery Info**(%%) ====
268 268  
269 269  
270 270  Check the battery voltage for LDS12-LB.
... ... @@ -274,7 +274,7 @@
274 274  Ex2: 0x0B49 = 2889mV
275 275  
276 276  
277 -=== 2.3.2 DS18B20 Temperature sensor ===
235 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
278 278  
279 279  
280 280  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -287,7 +287,7 @@
287 287  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
288 288  
289 289  
290 -=== 2.3.3 Distance ===
248 +==== (% style="color:blue" %)**Distance**(%%) ====
291 291  
292 292  
293 293  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -298,7 +298,7 @@
298 298  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
299 299  
300 300  
301 -=== 2.3.4 Distance signal strength ===
259 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
302 302  
303 303  
304 304  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -311,21 +311,36 @@
311 311  Customers can judge whether they need to adjust the environment based on the signal strength.
312 312  
313 313  
314 -=== 2.3.5 Interrupt Pin ===
272 +**1) When the sensor detects valid data:**
315 315  
274 +[[image:image-20230805155335-1.png||height="145" width="724"]]
316 316  
276 +
277 +**2) When the sensor detects invalid data:**
278 +
279 +[[image:image-20230805155428-2.png||height="139" width="726"]]
280 +
281 +
282 +**3) When the sensor is not connected:**
283 +
284 +[[image:image-20230805155515-3.png||height="143" width="725"]]
285 +
286 +
287 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
288 +
289 +
317 317  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
318 318  
319 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
292 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
320 320  
321 321  **Example:**
322 322  
323 -0x00: Normal uplink packet.
296 +If byte[0]&0x01=0x00 : Normal uplink packet.
324 324  
325 -0x01: Interrupt Uplink Packet.
298 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
326 326  
327 327  
328 -=== 2.3.6 LiDAR temp ===
301 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
329 329  
330 330  
331 331  Characterize the internal temperature value of the sensor.
... ... @@ -335,7 +335,7 @@
335 335  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
336 336  
337 337  
338 -=== 2.3.7 Message Type ===
311 +==== (% style="color:blue" %)**Message Type**(%%) ====
339 339  
340 340  
341 341  (((
... ... @@ -348,13 +348,97 @@
348 348  
349 349  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
350 350  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
351 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
352 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
324 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
325 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
353 353  
327 +[[image:image-20230805150315-4.png||height="233" width="723"]]
354 354  
355 -=== 2.3.8 Decode payload in The Things Network ===
356 356  
330 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
357 357  
332 +
333 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
334 +
335 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
336 +
337 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
338 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
339 +**Size(bytes)**
340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
341 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
342 +Reserve(0xFF)
343 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
344 +LiDAR temp
345 +)))|(% style="width:85px" %)Unix TimeStamp
346 +
347 +**Interrupt flag & Interrupt level:**
348 +
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
350 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
351 +**Size(bit)**
352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
353 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
354 +Interrupt flag
355 +)))
356 +
357 +* (((
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
359 +)))
360 +
361 +For example, in the US915 band, the max payload for different DR is:
362 +
363 +**a) DR0:** max is 11 bytes so one entry of data
364 +
365 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
366 +
367 +**c) DR2:** total payload includes 11 entries of data
368 +
369 +**d) DR3:** total payload includes 22 entries of data.
370 +
371 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
372 +
373 +
374 +**Downlink:**
375 +
376 +0x31 64 CC 68 0C 64 CC 69 74 05
377 +
378 +[[image:image-20230805144936-2.png||height="113" width="746"]]
379 +
380 +**Uplink:**
381 +
382 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
383 +
384 +
385 +**Parsed Value:**
386 +
387 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
388 +
389 +
390 +[360,176,30,High,True,2023-08-04 02:53:00],
391 +
392 +[355,168,30,Low,False,2023-08-04 02:53:29],
393 +
394 +[245,211,30,Low,False,2023-08-04 02:54:29],
395 +
396 +[57,700,30,Low,False,2023-08-04 02:55:29],
397 +
398 +[361,164,30,Low,True,2023-08-04 02:56:00],
399 +
400 +[337,184,30,Low,False,2023-08-04 02:56:40],
401 +
402 +[20,4458,30,Low,False,2023-08-04 02:57:40],
403 +
404 +[362,173,30,Low,False,2023-08-04 02:58:53],
405 +
406 +
407 +**History read from serial port:**
408 +
409 +[[image:image-20230805145056-3.png]]
410 +
411 +
412 +=== 2.3.4 Decode payload in The Things Network ===
413 +
414 +
358 358  While using TTN network, you can add the payload format to decode the payload.
359 359  
360 360  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -369,15 +369,9 @@
369 369  )))
370 370  
371 371  
372 -== 2.4 Uplink Interval ==
429 +== 2.4 ​Show Data in DataCake IoT Server ==
373 373  
374 374  
375 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
376 -
377 -
378 -== 2.5 ​Show Data in DataCake IoT Server ==
379 -
380 -
381 381  (((
382 382  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
383 383  )))
... ... @@ -410,13 +410,13 @@
410 410  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
411 411  
412 412  
413 -== 2.6 Datalog Feature ==
464 +== 2.5 Datalog Feature ==
414 414  
415 415  
416 416  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
417 417  
418 418  
419 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
470 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
420 420  
421 421  
422 422  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -428,14 +428,11 @@
428 428  b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
429 429  )))
430 430  
431 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
432 432  
433 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
434 434  
484 +=== 2.5.2 Unix TimeStamp ===
435 435  
436 -=== 2.6.2 Unix TimeStamp ===
437 437  
438 -
439 439  LDS12-LB uses Unix TimeStamp format based on
440 440  
441 441  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
... ... @@ -450,7 +450,7 @@
450 450  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
451 451  
452 452  
453 -=== 2.6.3 Set Device Time ===
501 +=== 2.5.3 Set Device Time ===
454 454  
455 455  
456 456  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -460,13 +460,13 @@
460 460  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
461 461  
462 462  
463 -=== 2.6.4 Poll sensor value ===
511 +=== 2.5.4 Poll sensor value ===
464 464  
465 465  
466 466  Users can poll sensor values based on timestamps. Below is the downlink command.
467 467  
468 468  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
469 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
517 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
470 470  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
471 471  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
472 472  
... ... @@ -487,7 +487,7 @@
487 487  )))
488 488  
489 489  
490 -== 2.7 Frequency Plans ==
538 +== 2.6 Frequency Plans ==
491 491  
492 492  
493 493  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -495,100 +495,8 @@
495 495  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
496 496  
497 497  
498 -== 2.8 LiDAR ToF Measurement ==
546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
499 499  
500 -=== 2.8.1 Principle of Distance Measurement ===
501 -
502 -
503 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
504 -
505 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
506 -
507 -
508 -=== 2.8.2 Distance Measurement Characteristics ===
509 -
510 -
511 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
512 -
513 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
514 -
515 -
516 -(((
517 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
518 -)))
519 -
520 -(((
521 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
522 -)))
523 -
524 -(((
525 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
526 -)))
527 -
528 -
529 -(((
530 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
531 -)))
532 -
533 -
534 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
535 -
536 -
537 -(((
538 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
539 -)))
540 -
541 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
542 -
543 -(((
544 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
545 -)))
546 -
547 -
548 -=== 2.8.3 Notice of usage ===
549 -
550 -
551 -Possible invalid /wrong reading for LiDAR ToF tech:
552 -
553 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
554 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
555 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
556 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
557 -
558 -
559 -
560 -
561 -=== 2.8.4  Reflectivity of different objects ===
562 -
563 -
564 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
565 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
566 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
567 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
568 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
569 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
570 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
571 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
572 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
573 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
574 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
575 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
576 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
577 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
578 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
579 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
580 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
581 -Unpolished white metal surface
582 -)))|(% style="width:93px" %)130%
583 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
584 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
585 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
586 -
587 -
588 -
589 -
590 -= 3. Configure LDS12-LB =
591 -
592 592  == 3.1 Configure Methods ==
593 593  
594 594  
... ... @@ -600,9 +600,6 @@
600 600  
601 601  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
602 602  
603 -
604 -
605 -
606 606  == 3.2 General Commands ==
607 607  
608 608  
... ... @@ -663,14 +663,17 @@
663 663  )))
664 664  * (((
665 665  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
619 +
620 +
621 +
666 666  )))
667 667  
668 668  === 3.3.2 Set Interrupt Mode ===
669 669  
670 670  
671 -Feature, Set Interrupt mode for PA8 of pin.
627 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
672 672  
673 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
629 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
674 674  
675 675  (% style="color:blue" %)**AT Command: AT+INTMOD**
676 676  
... ... @@ -681,7 +681,11 @@
681 681  OK
682 682  the mode is 0 =Disable Interrupt
683 683  )))
684 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
640 +|(% style="width:154px" %)(((
641 +AT+INTMOD=2
642 +
643 +(default)
644 +)))|(% style="width:196px" %)(((
685 685  Set Transmit Interval
686 686  0. (Disable Interrupt),
687 687  ~1. (Trigger by rising and falling edge)
... ... @@ -700,86 +700,6 @@
700 700  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
701 701  
702 702  
703 -
704 -
705 -
706 -=== 3.3.3 Get Firmware Version Info ===
707 -
708 -
709 -Feature: use downlink to get firmware version.
710 -
711 -(% style="color:blue" %)**Downlink Command: 0x26**
712 -
713 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
714 -|(% style="background-color:#4F81BD;color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4F81BD;color:white; width:57px" %)**FPort**|(% style="background-color:#4F81BD;color:white; width:91px" %)**Type Code**|(% style="background-color:#4F81BD;color:white; width:153px" %)**Downlink payload size(bytes)**
715 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
716 -
717 -* Reply to the confirmation package: 26 01
718 -* Reply to non-confirmed packet: 26 00
719 -
720 -Device will send an uplink after got this downlink command. With below payload:
721 -
722 -Configures info payload:
723 -
724 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
725 -|=(% style="background-color:#4F81BD;color:white" %)(((
726 -**Size(bytes)**
727 -)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
728 -|**Value**|Software Type|(((
729 -Frequency Band
730 -)))|Sub-band|(((
731 -Firmware Version
732 -)))|Sensor Type|Reserve|(((
733 -[[Message Type>>||anchor="H2.3.7MessageType"]]
734 -Always 0x02
735 -)))
736 -
737 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
738 -
739 -(% style="color:#037691" %)**Frequency Band**:
740 -
741 -*0x01: EU868
742 -
743 -*0x02: US915
744 -
745 -*0x03: IN865
746 -
747 -*0x04: AU915
748 -
749 -*0x05: KZ865
750 -
751 -*0x06: RU864
752 -
753 -*0x07: AS923
754 -
755 -*0x08: AS923-1
756 -
757 -*0x09: AS923-2
758 -
759 -*0xa0: AS923-3
760 -
761 -
762 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
763 -
764 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
765 -
766 -(% style="color:#037691" %)**Sensor Type**:
767 -
768 -0x01: LSE01
769 -
770 -0x02: LDDS75
771 -
772 -0x03: LDDS20
773 -
774 -0x04: LLMS01
775 -
776 -0x05: LSPH01
777 -
778 -0x06: LSNPK01
779 -
780 -0x07: LLDS12
781 -
782 -
783 783  = 4. Battery & Power Consumption =
784 784  
785 785  
... ... @@ -828,11 +828,11 @@
828 828  
829 829  
830 830  (((
831 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
711 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
832 832  )))
833 833  
834 834  (((
835 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
715 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
836 836  )))
837 837  
838 838  
... ... @@ -841,7 +841,7 @@
841 841  )))
842 842  
843 843  (((
844 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
724 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
845 845  )))
846 846  
847 847  
... ... @@ -848,7 +848,7 @@
848 848  = 8. Order Info =
849 849  
850 850  
851 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
852 852  
853 853  (% style="color:red" %)**XXX**(%%): **The default frequency band**
854 854  
... ... @@ -873,7 +873,7 @@
873 873  
874 874  (% style="color:#037691" %)**Package Includes**:
875 875  
876 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
877 877  
878 878  (% style="color:#037691" %)**Dimension and weight**:
879 879  
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content