Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 7 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -35,7 +35,7 @@ 35 35 36 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 4162334-2.png||height="468" width="800"]]38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -62,6 +62,23 @@ 62 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 63 63 * Operating Temperature: -40 ~~ 85°C 64 64 65 +(% style="color:#037691" %)**Probe Specification:** 66 + 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 81 + 65 65 (% style="color:#037691" %)**LoRa Spec:** 66 66 67 67 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -82,143 +82,28 @@ 82 82 * Sleep Mode: 5uA @ 3.3v 83 83 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 84 84 85 -== 1.4 Suitable Container& Liquid==102 +== 1.4 Applications == 86 86 87 87 88 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 89 -* Container shape is regular, and surface is smooth. 90 -* Container Thickness: 91 -** Pure metal material. 2~~8mm, best is 3~~5mm 92 -** Pure non metal material: <10 mm 93 -* Pure liquid without irregular deposition. 105 +* Horizontal distance measurement 106 +* Parking management system 107 +* Object proximity and presence detection 108 +* Intelligent trash can management system 109 +* Robot obstacle avoidance 110 +* Automatic control 111 +* Sewer 94 94 95 95 (% style="display:none" %) 96 96 97 -== 1.5 InstallLDS12-LB==115 +== 1.5 Sleep mode and working mode == 98 98 99 99 100 -(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 101 - 102 -LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 103 - 104 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 105 - 106 - 107 -((( 108 -(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 109 -))) 110 - 111 -((( 112 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 113 -))) 114 - 115 -[[image:image-20230613143052-5.png]] 116 - 117 - 118 -No polish needed if the container is shine metal surface without paint or non-metal container. 119 - 120 -[[image:image-20230613143125-6.png]] 121 - 122 - 123 -((( 124 -(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 125 -))) 126 - 127 -((( 128 -Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 129 -))) 130 - 131 -((( 132 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 133 -))) 134 - 135 -((( 136 -After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 137 -))) 138 - 139 - 140 -((( 141 -(% style="color:blue" %)**LED Status:** 142 -))) 143 - 144 -* ((( 145 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 146 -))) 147 - 148 -* ((( 149 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 150 -))) 151 -* ((( 152 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 153 -))) 154 - 155 -((( 156 -LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 157 -))) 158 - 159 - 160 -((( 161 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 162 -))) 163 - 164 - 165 -((( 166 -(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 167 -))) 168 - 169 -((( 170 -Prepare Eproxy AB glue. 171 -))) 172 - 173 -((( 174 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 175 -))) 176 - 177 -((( 178 -Reset LDS12-LB and see if the BLUE LED is slowly blinking. 179 -))) 180 - 181 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 182 - 183 - 184 -((( 185 -(% style="color:red" %)**Note :** 186 - 187 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 188 -))) 189 - 190 -((( 191 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 192 -))) 193 - 194 - 195 -== 1.6 Applications == 196 - 197 - 198 -* Smart liquid control solution 199 - 200 -* Smart liquefied gas solution 201 - 202 -== 1.7 Precautions == 203 - 204 - 205 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 206 - 207 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 208 - 209 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 210 - 211 -(% style="display:none" %) 212 - 213 -== 1.8 Sleep mode and working mode == 214 - 215 - 216 216 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 217 217 218 218 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 219 219 220 220 221 -== 1. 9Button & LEDs ==123 +== 1.6 Button & LEDs == 222 222 223 223 224 224 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -225,7 +225,7 @@ 225 225 226 226 227 227 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 228 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**130 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 229 229 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 230 230 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 231 231 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -237,7 +237,7 @@ 237 237 ))) 238 238 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 239 239 240 -== 1. 10BLE connection ==142 +== 1.7 BLE connection == 241 241 242 242 243 243 LDS12-LB support BLE remote configure. ... ... @@ -251,12 +251,12 @@ 251 251 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 252 252 253 253 254 -== 1. 11Pin Definitions ==156 +== 1.8 Pin Definitions == 255 255 256 -[[image:image-20230523174230-1.png]] 257 257 159 +[[image:image-20230805144259-1.png||height="413" width="741"]] 258 258 259 -== 1. 12Mechanical ==161 +== 1.9 Mechanical == 260 260 261 261 262 262 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -270,12 +270,10 @@ 270 270 271 271 (% style="color:blue" %)**Probe Mechanical:** 272 272 273 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 274 274 176 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 275 275 276 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 277 277 278 - 279 279 = 2. Configure LDS12-LB to connect to LoRaWAN network = 280 280 281 281 == 2.1 How it works == ... ... @@ -292,7 +292,7 @@ 292 292 293 293 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 294 294 295 -[[image:image-2023061 4162359-3.png||height="468" width="800"]](% style="display:none" %)195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 296 296 297 297 298 298 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -336,75 +336,118 @@ 336 336 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 337 337 338 338 339 -== 2.3 239 +== 2.3 Uplink Payload == 340 340 241 +=== 2.3.1 Device Status, FPORT~=5 === 341 341 342 -((( 343 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 344 -))) 345 345 346 -((( 347 -Uplink payload includes in total 8 bytes. 348 -))) 244 +Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 349 349 350 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 351 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 246 +The Payload format is as below. 247 + 248 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 249 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 352 352 **Size(bytes)** 353 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 354 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 355 -[[Distance>>||anchor="H2.3.2A0Distance"]] 356 -(unit: mm) 357 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 358 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 359 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 251 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 252 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 360 360 361 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]254 +Example parse in TTNv3 362 362 256 +[[image:image-20230805103904-1.png||height="131" width="711"]] 363 363 364 - ===2.3.1 BatteryInfo===258 +(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 365 365 260 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 366 366 367 - Checkthe batteryvoltageforLDS12-LB.262 +(% style="color:blue" %)**Frequency Band**: 368 368 264 +0x01: EU868 265 + 266 +0x02: US915 267 + 268 +0x03: IN865 269 + 270 +0x04: AU915 271 + 272 +0x05: KZ865 273 + 274 +0x06: RU864 275 + 276 +0x07: AS923 277 + 278 +0x08: AS923-1 279 + 280 +0x09: AS923-2 281 + 282 +0x0a: AS923-3 283 + 284 +0x0b: CN470 285 + 286 +0x0c: EU433 287 + 288 +0x0d: KR920 289 + 290 +0x0e: MA869 291 + 292 +(% style="color:blue" %)**Sub-Band**: 293 + 294 +AU915 and US915:value 0x00 ~~ 0x08 295 + 296 +CN470: value 0x0B ~~ 0x0C 297 + 298 +Other Bands: Always 0x00 299 + 300 +(% style="color:blue" %)**Battery Info**: 301 + 302 +Check the battery voltage. 303 + 369 369 Ex1: 0x0B45 = 2885mV 370 370 371 371 Ex2: 0x0B49 = 2889mV 372 372 373 373 374 -=== 2.3.2 Distance===309 +=== 2.3.2 Uplink Payload, FPORT~=2 === 375 375 376 376 377 377 ((( 378 -Get the distance. Flat object range 20mm - 2000mm. 379 -))) 313 +LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 380 380 381 -((( 382 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 315 +periodically send this uplink every 20 minutes, this interval [[can be changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]]. 383 383 384 - (%style="color:blue"%)**0605(H) =1541(D) = 1541 mm.**317 +Uplink Payload totals 11 bytes. 385 385 ))) 386 386 387 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 320 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 321 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 322 +**Size(bytes)** 323 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 324 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 325 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 326 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 327 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 328 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 329 +[[Message Type>>||anchor="HMessageType"]] 330 +))) 388 388 389 - * If the sensor valuelower than0x0014(20mm), thesensor valuewill be invalid.332 +[[image:image-20230805104104-2.png||height="136" width="754"]] 390 390 391 -=== 2.3.3 Interrupt Pin === 392 392 335 +==== (% style="color:blue" %)**Battery Info**(%%) ==== 393 393 394 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 395 395 396 - **Example:**338 +Check the battery voltage for LDS12-LB. 397 397 398 -0x0 0:Normaluplink packet.340 +Ex1: 0x0B45 = 2885mV 399 399 400 -0x0 1:InterruptUplink Packet.342 +Ex2: 0x0B49 = 2889mV 401 401 402 402 403 -=== 2.3.4DS18B20 Temperature sensor ===345 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 404 404 405 405 406 406 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 407 407 350 + 408 408 **Example**: 409 409 410 410 If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -412,42 +412,154 @@ 412 412 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 413 413 414 414 415 -=== 2.3.5SensorFlag===358 +==== (% style="color:blue" %)**Distance**(%%) ==== 416 416 417 417 361 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 362 + 363 + 364 +**Example**: 365 + 366 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 367 + 368 + 369 +==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 370 + 371 + 372 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 373 + 374 + 375 +**Example**: 376 + 377 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 378 + 379 +Customers can judge whether they need to adjust the environment based on the signal strength. 380 + 381 + 382 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 383 + 384 + 385 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 386 + 387 +Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 388 + 389 +**Example:** 390 + 391 +0x00: Normal uplink packet. 392 + 393 +0x01: Interrupt Uplink Packet. 394 + 395 + 396 +==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 397 + 398 + 399 +Characterize the internal temperature value of the sensor. 400 + 401 +**Example: ** 402 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 403 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 404 + 405 + 406 +==== (% style="color:blue" %)**Message Type**(%%) ==== 407 + 408 + 418 418 ((( 419 - 0x01:DetectUltrasonicSensor410 +For a normal uplink payload, the message type is always 0x01. 420 420 ))) 421 421 422 422 ((( 423 - 0x00: No UltrasonicSensor414 +Valid Message Type: 424 424 ))) 425 425 417 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 418 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 419 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 420 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 426 426 427 -=== 2.3.6 Decode payload in The Things Network === 428 428 423 +=== 2.3.3 Historical Water Flow Status, FPORT~=3 === 429 429 430 - WhileusingTTNnetwork,youcanaddthepayloadformatecodethepayload.425 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.5DatalogFeature]]. 431 431 432 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]427 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status. 433 433 434 -The payload decoder function for TTN V3 is here: 435 435 436 -((( 437 - LDS12-LBTTNV3PayloadDecoder:ps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]430 +* ((( 431 +Each data entry is 11 bytes and has the same structure as [[real time water flow status>>url:http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L-LB_LoRaWAN_Flow_Sensor_User_Manual/#H2.3.3A0WaterFlowValue2CUplinkFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 438 438 ))) 439 439 434 +For example, in the US915 band, the max payload for different DR is: 440 440 441 - ==2.4UplinkInterval==436 +**a) DR0:** max is 11 bytes so one entry of data 442 442 438 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 443 443 444 - TheLDS12-LB by defaultuplink the sensor dataevery 20 minutes.Usercan changethis interval by AT Command or LoRaWAN Downlink Command. See thislink: [[ChangeUplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]440 +**c) DR2:** total payload includes 11 entries of data 445 445 442 +**d) DR3:** total payload includes 22 entries of data. 446 446 447 - ==2.5ShowData inDataCakeIoTServer==444 +If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 448 448 449 449 447 +**Downlink:** 448 + 449 +0x31 64 CC 68 0C 64 CC 69 74 05 450 + 451 +[[image:image-20230805144936-2.png||height="113" width="746"]] 452 + 453 +**Uplink:** 454 + 455 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 456 + 457 + 458 +**Parsed Value:** 459 + 460 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 461 + 462 + 463 +[360,176,30,High,True,2023-08-04 02:53:00], 464 + 465 +[355,168,30,Low,False,2023-08-04 02:53:29], 466 + 467 +[245,211,30,Low,False,2023-08-04 02:54:29], 468 + 469 +[57,700,30,Low,False,2023-08-04 02:55:29], 470 + 471 +[361,164,30,Low,True,2023-08-04 02:56:00], 472 + 473 +[337,184,30,Low,False,2023-08-04 02:56:40], 474 + 475 +[20,4458,30,Low,False,2023-08-04 02:57:40], 476 + 477 +[362,173,30,Low,False,2023-08-04 02:58:53], 478 + 479 + 480 +History read from serial port: 481 + 482 +[[image:image-20230805145056-3.png]] 483 + 484 + 485 +=== 2.3.3 Decode payload in The Things Network === 486 + 487 + 488 +While using TTN network, you can add the payload format to decode the payload. 489 + 490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 491 + 492 + 450 450 ((( 494 +The payload decoder function for TTN is here: 495 +))) 496 + 497 +((( 498 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 499 +))) 500 + 501 + 502 +== 2.4 Show Data in DataCake IoT Server == 503 + 504 + 505 +((( 451 451 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 452 452 ))) 453 453 ... ... @@ -479,13 +479,13 @@ 479 479 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 480 480 481 481 482 -== 2. 6Datalog Feature ==537 +== 2.5 Datalog Feature == 483 483 484 484 485 485 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 486 486 487 487 488 -=== 2. 6.1 Ways to get datalog via LoRaWAN ===543 +=== 2.5.1 Ways to get datalog via LoRaWAN === 489 489 490 490 491 491 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. ... ... @@ -502,7 +502,7 @@ 502 502 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 503 503 504 504 505 -=== 2. 6.2 Unix TimeStamp ===560 +=== 2.5.2 Unix TimeStamp === 506 506 507 507 508 508 LDS12-LB uses Unix TimeStamp format based on ... ... @@ -519,7 +519,7 @@ 519 519 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 520 520 521 521 522 -=== 2. 6.3 Set Device Time ===577 +=== 2.5.3 Set Device Time === 523 523 524 524 525 525 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. ... ... @@ -529,13 +529,13 @@ 529 529 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 530 530 531 531 532 -=== 2. 6.4 Poll sensor value ===587 +=== 2.5.4 Poll sensor value === 533 533 534 534 535 535 Users can poll sensor values based on timestamps. Below is the downlink command. 536 536 537 537 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 538 -|(% colspan="4" style="background-color:# d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**593 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 539 539 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 540 540 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 541 541 ... ... @@ -556,7 +556,7 @@ 556 556 ))) 557 557 558 558 559 -== 2. 7Frequency Plans ==614 +== 2.6 Frequency Plans == 560 560 561 561 562 562 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. ... ... @@ -564,6 +564,90 @@ 564 564 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 565 565 566 566 622 +== 2.7 LiDAR ToF Measurement == 623 + 624 +=== 2.7.1 Principle of Distance Measurement === 625 + 626 + 627 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 628 + 629 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 630 + 631 + 632 +=== 2.7.2 Distance Measurement Characteristics === 633 + 634 + 635 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 636 + 637 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 638 + 639 + 640 +((( 641 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 642 +))) 643 + 644 +((( 645 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 646 +))) 647 + 648 +((( 649 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 650 +))) 651 + 652 + 653 +((( 654 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 655 +))) 656 + 657 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 658 + 659 +((( 660 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 661 +))) 662 + 663 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 664 + 665 +((( 666 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 667 +))) 668 + 669 + 670 +=== 2.7.3 Notice of usage === 671 + 672 + 673 +Possible invalid /wrong reading for LiDAR ToF tech: 674 + 675 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 676 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 677 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 678 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 679 + 680 +=== 2.7.4 Reflectivity of different objects === 681 + 682 + 683 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 684 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 685 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 686 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 687 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 688 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 689 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 690 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 691 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 692 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 693 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 694 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 695 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 696 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 697 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 698 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 699 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 700 +Unpolished white metal surface 701 +)))|(% style="width:93px" %)130% 702 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 703 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 704 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 705 + 567 567 = 3. Configure LDS12-LB = 568 568 569 569 == 3.1 Configure Methods == ... ... @@ -609,7 +609,7 @@ 609 609 ))) 610 610 611 611 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 612 -|=(% style="width: 156px;background-color:# D9E2F3;#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;#0070c0" %)**Function**|=(% style="background-color:#D9E2F3;#0070c0" %)**Response**751 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 613 613 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 614 614 30000 615 615 OK ... ... @@ -652,7 +652,7 @@ 652 652 (% style="color:blue" %)**AT Command: AT+INTMOD** 653 653 654 654 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 655 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**794 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 656 656 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 657 657 0 658 658 OK ... ... @@ -676,6 +676,35 @@ 676 676 677 677 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 678 678 818 +=== 3.3.3 Set Power Output Duration === 819 + 820 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 821 + 822 +~1. first enable the power output to external sensor, 823 + 824 +2. keep it on as per duration, read sensor value and construct uplink payload 825 + 826 +3. final, close the power output. 827 + 828 +(% style="color:blue" %)**AT Command: AT+3V3T** 829 + 830 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 831 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 832 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 833 +OK 834 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 835 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 836 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 837 + 838 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 839 +Format: Command Code (0x07) followed by 3 bytes. 840 + 841 +The first byte is 01,the second and third bytes are the time to turn on. 842 + 843 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 844 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 845 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 846 + 679 679 = 4. Battery & Power Consumption = 680 680 681 681 ... ... @@ -696,7 +696,7 @@ 696 696 697 697 * Fix bugs. 698 698 699 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/p h4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**867 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]** 700 700 701 701 Methods to Update Firmware: 702 702 ... ... @@ -724,11 +724,11 @@ 724 724 725 725 726 726 ((( 727 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 895 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 728 728 ))) 729 729 730 730 ((( 731 -Troubleshooting: Please avoid use of this product under such circumstance in practice. 899 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 732 732 ))) 733 733 734 734 ... ... @@ -737,7 +737,7 @@ 737 737 ))) 738 738 739 739 ((( 740 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 908 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 741 741 ))) 742 742 743 743
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.7 KB - Content