Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.2
edited by Xiaoling
on 2023/06/14 16:25
Change comment: There is no comment for this version
To version 113.7
edited by Xiaoling
on 2023/11/10 10:22
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,435 +18,416 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**LoRa Spec:**
66 66  
67 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
68 -* Max +22 dBm constant RF output vs.
69 -* RX sensitivity: down to -139 dBm.
70 -* Excellent blocking immunity
66 +(% style="display:none" %)
71 71  
72 -(% style="color:#037691" %)**Battery:**
73 73  
74 -* Li/SOCI2 un-chargeable battery
75 -* Capacity: 8500mAh
76 -* Self-Discharge: <1% / Year @ 25°C
77 -* Max continuously current: 130mA
78 -* Max boost current: 2A, 1 second
69 += 2. Configure DS20L to connect to LoRaWAN network =
79 79  
80 -(% style="color:#037691" %)**Power Consumption**
71 +== 2.1 How it works ==
81 81  
82 -* Sleep Mode: 5uA @ 3.3v
83 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
84 84  
85 -== 1.4 Suitable Container & Liquid ==
74 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
86 86  
76 +(% style="display:none" %) (%%)
87 87  
88 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
89 -* Container shape is regular, and surface is smooth.
90 -* Container Thickness:
91 -** Pure metal material.  2~~8mm, best is 3~~5mm
92 -** Pure non metal material: <10 mm
93 -* Pure liquid without irregular deposition.
78 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 94  
95 -(% style="display:none" %)
96 96  
97 -== 1.5 Install LDS12-LB ==
81 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
98 98  
83 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
99 99  
100 -(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
101 101  
102 -LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
103 103  
104 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
105 105  
90 +Each DS20L is shipped with a sticker with the default device EUI as below:
106 106  
107 -(((
108 -(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
109 -)))
92 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
110 110  
111 -(((
112 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
113 -)))
114 114  
115 -[[image:image-20230613143052-5.png]]
95 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 116  
117 117  
118 -No polish needed if the container is shine metal surface without paint or non-metal container.
98 +(% style="color:blue" %)**Register the device**
119 119  
120 -[[image:image-20230613143125-6.png]]
100 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
121 121  
122 122  
123 -(((
124 -(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
125 -)))
103 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
126 126  
127 -(((
128 -Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
129 -)))
105 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
130 130  
131 -(((
132 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
133 -)))
134 134  
135 -(((
136 -After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
137 -)))
108 +(% style="color:blue" %)**Add APP EUI in the application**
138 138  
139 139  
140 -(((
141 -(% style="color:blue" %)**LED Status:**
142 -)))
111 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
143 143  
144 -* (((
145 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
146 -)))
147 147  
148 -* (((
149 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
150 -)))
151 -* (((
152 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
153 -)))
114 +(% style="color:blue" %)**Add APP KEY**
154 154  
155 -(((
156 -LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
157 -)))
116 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
158 158  
159 159  
160 -(((
161 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
162 -)))
119 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
163 163  
164 164  
165 -(((
166 -(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
167 -)))
122 +Press the button for 5 seconds to activate the DS20L.
168 168  
169 -(((
170 -Prepare Eproxy AB glue.
171 -)))
124 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
172 172  
173 -(((
174 -Put Eproxy AB glue in the sensor and press it hard on the container installation point.
175 -)))
126 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
176 176  
177 -(((
178 -Reset LDS12-LB and see if the BLUE LED is slowly blinking.
179 -)))
180 180  
181 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
129 +== 2.3 ​Uplink Payload ==
182 182  
131 +=== 2.3.1 Device Status, FPORT~=5 ===
183 183  
184 -(((
185 -(% style="color:red" %)**Note :**
186 186  
187 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
188 -)))
134 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
189 189  
190 -(((
191 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
192 -)))
136 +The Payload format is as below.
193 193  
138 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
139 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
140 +**Size(bytes)**
141 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
142 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
194 194  
195 -== 1.6 Applications ==
144 +Example parse in TTNv3
196 196  
146 +[[image:image-20230805103904-1.png||height="131" width="711"]]
197 197  
198 -* Smart liquid control solution
148 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
199 199  
200 -* Smart liquefied gas solution
150 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
201 201  
202 -== 1.7 Precautions ==
152 +(% style="color:blue" %)**Frequency Band**:
203 203  
154 +0x01: EU868
204 204  
205 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
156 +0x02: US915
206 206  
207 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
158 +0x03: IN865
208 208  
209 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
160 +0x04: AU915
210 210  
211 -(% style="display:none" %)
162 +0x05: KZ865
212 212  
213 -== 1.8 Sleep mode and working mode ==
164 +0x06: RU864
214 214  
166 +0x07: AS923
215 215  
216 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
168 +0x08: AS923-1
217 217  
218 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
170 +0x09: AS923-2
219 219  
172 +0x0a: AS923-3
220 220  
221 -== 1.9 Button & LEDs ==
174 +0x0b: CN470
222 222  
176 +0x0c: EU433
223 223  
224 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
178 +0x0d: KR920
225 225  
180 +0x0e: MA869
226 226  
227 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
228 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
229 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
230 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
231 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
232 -)))
233 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
234 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
235 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
236 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
237 -)))
238 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
182 +(% style="color:blue" %)**Sub-Band**:
239 239  
240 -== 1.10 BLE connection ==
184 +AU915 and US915:value 0x00 ~~ 0x08
241 241  
186 +CN470: value 0x0B ~~ 0x0C
242 242  
243 -LDS12-LB support BLE remote configure.
188 +Other Bands: Always 0x00
244 244  
245 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
190 +(% style="color:blue" %)**Battery Info**:
246 246  
247 -* Press button to send an uplink
248 -* Press button to active device.
249 -* Device Power on or reset.
192 +Check the battery voltage.
250 250  
251 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
194 +Ex1: 0x0B45 = 2885mV
252 252  
196 +Ex2: 0x0B49 = 2889mV
253 253  
254 -== 1.11 Pin Definitions ==
255 255  
256 -[[image:image-20230523174230-1.png]]
199 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
257 257  
258 258  
259 -== 1.12 Mechanical ==
202 +(((
203 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
260 260  
205 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
261 261  
262 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
207 +Uplink Payload totals 11 bytes.
208 +)))
263 263  
210 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
211 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
212 +**Size(bytes)**
213 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
214 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
215 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
216 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
217 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
218 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
219 +[[Message Type>>||anchor="HMessageType"]]
220 +)))
264 264  
265 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
222 +[[image:image-20230805104104-2.png||height="136" width="754"]]
266 266  
267 267  
268 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
225 +==== (% style="color:blue" %)**Battery Info**(%%) ====
269 269  
270 270  
271 -(% style="color:blue" %)**Probe Mechanical:**
228 +Check the battery voltage for DS20L.
272 272  
273 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
230 +Ex1: 0x0B45 = 2885mV
274 274  
232 +Ex2: 0x0B49 = 2889mV
275 275  
276 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
277 277  
235 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
278 278  
279 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
280 280  
281 -== 2.1 How it works ==
238 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
282 282  
283 283  
284 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
241 +**Example**:
285 285  
286 -(% style="display:none" %) (%%)
243 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
287 287  
288 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
245 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
289 289  
290 290  
291 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
248 +==== (% style="color:blue" %)**Distance**(%%) ====
292 292  
293 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
294 294  
295 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
251 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
296 296  
297 297  
298 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
254 +**Example**:
299 299  
300 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
256 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
301 301  
302 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
303 303  
259 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
304 304  
305 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
306 306  
262 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
307 307  
308 -(% style="color:blue" %)**Register the device**
309 309  
310 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
265 +**Example**:
311 311  
267 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
312 312  
313 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
269 +Customers can judge whether they need to adjust the environment based on the signal strength.
314 314  
315 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
316 316  
272 +**1) When the sensor detects valid data:**
317 317  
318 -(% style="color:blue" %)**Add APP EUI in the application**
274 +[[image:image-20230805155335-1.png||height="145" width="724"]]
319 319  
320 320  
321 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
277 +**2) When the sensor detects invalid data:**
322 322  
279 +[[image:image-20230805155428-2.png||height="139" width="726"]]
323 323  
324 -(% style="color:blue" %)**Add APP KEY**
325 325  
326 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
282 +**3) When the sensor is not connected:**
327 327  
284 +[[image:image-20230805155515-3.png||height="143" width="725"]]
328 328  
329 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
330 330  
287 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
331 331  
332 -Press the button for 5 seconds to activate the LDS12-LB.
333 333  
334 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
290 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
335 335  
336 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
292 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
337 337  
294 +**Example:**
338 338  
339 -== 2.3  ​Uplink Payload ==
296 +If byte[0]&0x01=0x00 : Normal uplink packet.
340 340  
298 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
341 341  
300 +
301 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
302 +
303 +
304 +Characterize the internal temperature value of the sensor.
305 +
306 +**Example: **
307 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
308 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
309 +
310 +
311 +==== (% style="color:blue" %)**Message Type**(%%) ====
312 +
313 +
342 342  (((
343 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
315 +For a normal uplink payload, the message type is always 0x01.
344 344  )))
345 345  
346 346  (((
347 -Uplink payload includes in total 8 bytes.
319 +Valid Message Type:
348 348  )))
349 349  
350 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
351 -|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
352 -**Size(bytes)**
353 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
354 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
355 -[[Distance>>||anchor="H2.3.2A0Distance"]]
356 -(unit: mm)
357 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
358 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
359 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
322 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
323 +|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
324 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
325 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
360 360  
361 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
327 +[[image:image-20230805150315-4.png||height="233" width="723"]]
362 362  
363 363  
364 -=== 2.3. Battery Info ===
330 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
365 365  
366 366  
367 -Check the battery voltage for LDS12-LB.
333 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
368 368  
369 -Ex1: 0x0B45 = 2885mV
335 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
370 370  
371 -Ex2: 0x0B49 = 2889mV
337 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
338 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
339 +**Size(bytes)**
340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
341 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
342 +Reserve(0xFF)
343 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
344 +LiDAR temp
345 +)))|(% style="width:85px" %)Unix TimeStamp
372 372  
347 +**Interrupt flag & Interrupt level:**
373 373  
374 -=== 2.3.2  Distance ===
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
350 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
351 +**Size(bit)**
352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
353 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
354 +Interrupt flag
355 +)))
375 375  
376 -
377 -(((
378 -Get the distance. Flat object range 20mm - 2000mm.
357 +* (((
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
379 379  )))
380 380  
381 -(((
382 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
361 +For example, in the US915 band, the max payload for different DR is:
383 383  
384 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
385 -)))
363 +**a) DR0:** max is 11 bytes so one entry of data
386 386  
387 -* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
365 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
388 388  
389 -* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
367 +**c) DR2:** total payload includes 11 entries of data
390 390  
391 -=== 2.3.3  Interrupt Pin ===
369 +**d) DR3:** total payload includes 22 entries of data.
392 392  
371 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
393 393  
394 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
395 395  
396 -**Example:**
374 +**Downlink:**
397 397  
398 -0x00: Normal uplink packet.
376 +0x31 64 CC 68 0C 64 CC 69 74 05
399 399  
400 -0x01: Interrupt Uplink Packet.
378 +[[image:image-20230805144936-2.png||height="113" width="746"]]
401 401  
380 +**Uplink:**
402 402  
403 -=== 2.3.4  DS18B20 Temperature sensor ===
382 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
404 404  
405 405  
406 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
385 +**Parsed Value:**
407 407  
408 -**Example**:
387 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
409 409  
410 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
411 411  
412 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
390 +[360,176,30,High,True,2023-08-04 02:53:00],
413 413  
392 +[355,168,30,Low,False,2023-08-04 02:53:29],
414 414  
415 -=== 2.3.5  Sensor Flag ===
394 +[245,211,30,Low,False,2023-08-04 02:54:29],
416 416  
396 +[57,700,30,Low,False,2023-08-04 02:55:29],
417 417  
418 -(((
419 -0x01: Detect Ultrasonic Sensor
420 -)))
398 +[361,164,30,Low,True,2023-08-04 02:56:00],
421 421  
422 -(((
423 -0x00: No Ultrasonic Sensor
424 -)))
400 +[337,184,30,Low,False,2023-08-04 02:56:40],
425 425  
402 +[20,4458,30,Low,False,2023-08-04 02:57:40],
426 426  
427 -=== 2.3.6  Decode payload in The Things Network ===
404 +[362,173,30,Low,False,2023-08-04 02:58:53],
428 428  
429 429  
430 -While using TTN network, you can add the payload format to decode the payload.
407 +**History read from serial port:**
431 431  
432 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
409 +[[image:image-20230805145056-3.png]]
433 433  
434 -The payload decoder function for TTN V3 is here:
435 435  
436 -(((
437 -LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
438 -)))
412 +=== 2.3.4 Decode payload in The Things Network ===
439 439  
440 440  
441 -== 2.4  Uplink Interval ==
415 +While using TTN network, you can add the payload format to decode the payload.
442 442  
417 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
443 443  
444 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
445 445  
420 +(((
421 +The payload decoder function for TTN is here:
422 +)))
446 446  
447 -== 2.5  ​Show Data in DataCake IoT Server ==
424 +(((
425 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
426 +)))
448 448  
449 449  
429 +== 2.4 ​Show Data in DataCake IoT Server ==
430 +
431 +
450 450  (((
451 451  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
452 452  )))
... ... @@ -469,7 +469,7 @@
469 469  
470 470  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
471 471  
472 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
454 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
473 473  
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
475 475  
... ... @@ -479,34 +479,31 @@
479 479  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
480 480  
481 481  
482 -== 2.6 Datalog Feature ==
464 +== 2.5 Datalog Feature ==
483 483  
484 484  
485 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
467 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
486 486  
487 487  
488 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
470 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
489 489  
490 490  
491 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
473 +Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
492 492  
493 493  * (((
494 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
476 +a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
495 495  )))
496 496  * (((
497 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
479 +b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
498 498  )))
499 499  
500 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
501 501  
502 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
503 503  
484 +=== 2.5.2 Unix TimeStamp ===
504 504  
505 -=== 2.6.2 Unix TimeStamp ===
506 506  
487 +DS20L uses Unix TimeStamp format based on
507 507  
508 -LDS12-LB uses Unix TimeStamp format based on
509 -
510 510  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
511 511  
512 512  User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
... ... @@ -519,23 +519,23 @@
519 519  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
520 520  
521 521  
522 -=== 2.6.3 Set Device Time ===
501 +=== 2.5.3 Set Device Time ===
523 523  
524 524  
525 525  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
526 526  
527 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
506 +Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
528 528  
529 529  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
530 530  
531 531  
532 -=== 2.6.4 Poll sensor value ===
511 +=== 2.5.4 Poll sensor value ===
533 533  
534 534  
535 535  Users can poll sensor values based on timestamps. Below is the downlink command.
536 536  
537 537  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
538 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
517 +|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
539 539  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
540 540  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
541 541  
... ... @@ -552,24 +552,24 @@
552 552  )))
553 553  
554 554  (((
555 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
534 +Uplink Internal =5s,means DS20L will send one packet every 5s. range 5~~255s.
556 556  )))
557 557  
558 558  
559 -== 2.7 Frequency Plans ==
538 +== 2.6 Frequency Plans ==
560 560  
561 561  
562 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
541 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
563 563  
564 564  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
565 565  
566 566  
567 -= 3. Configure LDS12-LB =
546 +3. Configure DS20L
568 568  
569 569  == 3.1 Configure Methods ==
570 570  
571 571  
572 -LDS12-LB supports below configure method:
551 +DS20L supports below configure method:
573 573  
574 574  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
575 575  
... ... @@ -591,10 +591,10 @@
591 591  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
592 592  
593 593  
594 -== 3.3 Commands special design for LDS12-LB ==
573 +== 3.3 Commands special design for DS20L ==
595 595  
596 596  
597 -These commands only valid for LDS12-LB, as below:
576 +These commands only valid for DS20L, as below:
598 598  
599 599  
600 600  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -609,7 +609,7 @@
609 609  )))
610 610  
611 611  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
612 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
591 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
613 613  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
614 614  30000
615 615  OK
... ... @@ -645,20 +645,24 @@
645 645  === 3.3.2 Set Interrupt Mode ===
646 646  
647 647  
648 -Feature, Set Interrupt mode for PA8 of pin.
627 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
649 649  
650 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
629 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
651 651  
652 652  (% style="color:blue" %)**AT Command: AT+INTMOD**
653 653  
654 654  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
655 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
634 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
656 656  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
657 657  0
658 658  OK
659 659  the mode is 0 =Disable Interrupt
660 660  )))
661 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
640 +|(% style="width:154px" %)(((
641 +AT+INTMOD=2
642 +
643 +(default)
644 +)))|(% style="width:196px" %)(((
662 662  Set Transmit Interval
663 663  0. (Disable Interrupt),
664 664  ~1. (Trigger by rising and falling edge)
... ... @@ -676,10 +676,11 @@
676 676  
677 677  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
678 678  
662 +
679 679  = 4. Battery & Power Consumption =
680 680  
681 681  
682 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
666 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
683 683  
684 684  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
685 685  
... ... @@ -688,7 +688,7 @@
688 688  
689 689  
690 690  (% class="wikigeneratedid" %)
691 -User can change firmware LDS12-LB to:
675 +User can change firmware DS20L to:
692 692  
693 693  * Change Frequency band/ region.
694 694  
... ... @@ -696,7 +696,7 @@
696 696  
697 697  * Fix bugs.
698 698  
699 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
700 700  
701 701  Methods to Update Firmware:
702 702  
... ... @@ -724,11 +724,11 @@
724 724  
725 725  
726 726  (((
727 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
711 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
728 728  )))
729 729  
730 730  (((
731 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
715 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
732 732  )))
733 733  
734 734  
... ... @@ -737,7 +737,7 @@
737 737  )))
738 738  
739 739  (((
740 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
724 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
741 741  )))
742 742  
743 743  
... ... @@ -744,7 +744,7 @@
744 744  = 8. Order Info =
745 745  
746 746  
747 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
748 748  
749 749  (% style="color:red" %)**XXX**(%%): **The default frequency band**
750 750  
... ... @@ -769,7 +769,7 @@
769 769  
770 770  (% style="color:#037691" %)**Package Includes**:
771 771  
772 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
773 773  
774 774  (% style="color:#037691" %)**Dimension and weight**:
775 775  
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content