Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.13
edited by Xiaoling
on 2023/06/14 17:08
Change comment: There is no comment for this version
To version 118.2
edited by Xiaoling
on 2023/11/28 14:00
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,257 +18,220 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
53 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
55 +* Operation Temperature: -40 ~~ 80 °C
56 +* Operation Humidity: 0~~99.9%RH (no Dew)
57 +* Storage Temperature: -10 ~~ 45°C
58 +* Measure Range: 3cm~~200cm @ 90% reflectivity
59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 +* ToF FoV: ±9°, Total 18°
61 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
63 +== 1.4 Power Consumption ==
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 81  
82 -(% style="color:#037691" %)**LoRa Spec:**
66 +(% style="color:#037691" %)**Battery Power Mode:**
83 83  
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
68 +* Idle: 0.003 mA @ 3.3v
69 +* Max : 360 mA
88 88  
89 -(% style="color:#037691" %)**Battery:**
71 +(% style="color:#037691" %)**Continuously mode**:
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
73 +* Idle: 21 mA @ 3.3v
74 +* Max : 360 mA
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
76 += 2. Configure DS20L to connect to LoRaWAN network =
98 98  
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
78 +== 2.1 How it works ==
101 101  
102 -== 1.4 Applications ==
103 103  
81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
83 +(% style="display:none" %) (%%)
112 112  
113 -(% style="display:none" %)
85 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
114 114  
115 -== 1.5 Sleep mode and working mode ==
116 116  
88 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
117 117  
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
119 119  
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
121 121  
94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
122 122  
123 -== 1.6 Button & LEDs ==
96 +Each DS20L is shipped with a sticker with the default device EUI as below:
124 124  
98 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
125 125  
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 127  
101 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
128 128  
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 -)))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 141  
142 -== 1.7 BLE connection ==
104 +(% style="color:blue" %)**Register the device**
143 143  
106 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
144 144  
145 -LDS12-LB support BLE remote configure.
146 146  
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
109 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
148 148  
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
111 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
152 152  
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 154  
114 +(% style="color:blue" %)**Add APP EUI in the application**
155 155  
156 -== 1.8 Pin Definitions ==
157 157  
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
117 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
159 159  
160 160  
120 +(% style="color:blue" %)**Add APP KEY**
161 161  
162 -== 1.9 Mechanical ==
122 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
163 163  
164 164  
165 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
166 166  
127 +[[image:image-20231128133704-1.png||height="189" width="441"]]
167 167  
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
129 +Press the button for 5 seconds to activate the DS20L.
169 169  
131 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
170 170  
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
133 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
172 172  
173 173  
174 -(% style="color:blue" %)**Probe Mechanical:**
136 +== 2.3 ​Uplink Payload ==
175 175  
138 +=== 2.3.1 Device Status, FPORT~=5 ===
176 176  
177 177  
178 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
179 179  
143 +The Payload format is as below.
180 180  
181 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
145 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
146 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
147 +**Size(bytes)**
148 +)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
149 +|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
182 182  
183 -== 2.1 How it works ==
151 +Example parse in TTNv3
184 184  
153 +[[image:1701149922873-259.png]]
185 185  
186 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
187 187  
188 -(% style="display:none" %) (%%)
157 +(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
189 189  
190 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
159 +(% style="color:blue" %)**Frequency Band**:
191 191  
161 +0x01: EU868
192 192  
193 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
163 +0x02: US915
194 194  
195 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 +0x03: IN865
196 196  
197 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
167 +0x04: AU915
198 198  
169 +0x05: KZ865
199 199  
200 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
171 +0x06: RU864
201 201  
202 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
173 +0x07: AS923
203 203  
204 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
175 +0x08: AS923-1
205 205  
177 +0x09: AS923-2
206 206  
207 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
179 +0x0a: AS923-3
208 208  
181 +0x0b: CN470
209 209  
210 -(% style="color:blue" %)**Register the device**
183 +0x0c: EU433
211 211  
212 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
185 +0x0d: KR920
213 213  
187 +0x0e: MA869
214 214  
215 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
189 +(% style="color:blue" %)**Sub-Band**:
216 216  
217 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
191 +AU915 and US915:value 0x00 ~~ 0x08
218 218  
193 +CN470: value 0x0B ~~ 0x0C
219 219  
220 -(% style="color:blue" %)**Add APP EUI in the application**
195 +Other Bands: Always 0x00
221 221  
197 +(% style="color:blue" %)**Battery Info**:
222 222  
223 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
199 +Check the battery voltage.
224 224  
201 +Ex1: 0x0B45 = 2885mV
225 225  
226 -(% style="color:blue" %)**Add APP KEY**
203 +Ex2: 0x0B49 = 2889mV
227 227  
228 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
229 229  
206 +=== 2.3.2 Uplink Payload, FPORT~=2 ===
230 230  
231 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
232 232  
209 +(((
210 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
233 233  
234 -Press the button for 5 seconds to activate the LDS12-LB.
212 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
235 235  
236 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
237 -
238 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
239 -
240 -
241 -== 2.3 ​Uplink Payload ==
242 -
243 -
244 -(((
245 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
214 +Uplink Payload totals 11 bytes.
246 246  )))
247 247  
248 -(((
249 -Uplink payload includes in total 11 bytes.
250 -)))
251 -
252 -
253 253  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
254 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
218 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
255 255  **Size(bytes)**
256 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
257 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
258 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
259 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
260 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
261 -)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
262 -[[Message Type>>||anchor="H2.3.7MessageType"]]
220 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
221 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
222 +[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
223 +)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
224 +[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
225 +)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
226 +[[Message Type>>||anchor="HMessageType"]]
263 263  )))
264 264  
265 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
229 +[[image:image-20230805104104-2.png||height="136" width="754"]]
266 266  
267 267  
268 -=== 2.3.1 Battery Info ===
232 +==== (% style="color:blue" %)**Battery Info**(%%) ====
269 269  
270 270  
271 -Check the battery voltage for LDS12-LB.
235 +Check the battery voltage for DS20L.
272 272  
273 273  Ex1: 0x0B45 = 2885mV
274 274  
... ... @@ -275,7 +275,7 @@
275 275  Ex2: 0x0B49 = 2889mV
276 276  
277 277  
278 -=== 2.3.2 DS18B20 Temperature sensor ===
242 +==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
279 279  
280 280  
281 281  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -288,7 +288,7 @@
288 288  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
289 289  
290 290  
291 -=== 2.3.3 Distance ===
255 +==== (% style="color:blue" %)**Distance**(%%) ====
292 292  
293 293  
294 294  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -299,7 +299,7 @@
299 299  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
300 300  
301 301  
302 -=== 2.3.4 Distance signal strength ===
266 +==== (% style="color:blue" %)**Distance signal strength**(%%) ====
303 303  
304 304  
305 305  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -312,21 +312,36 @@
312 312  Customers can judge whether they need to adjust the environment based on the signal strength.
313 313  
314 314  
315 -=== 2.3.5 Interrupt Pin ===
279 +**1) When the sensor detects valid data:**
316 316  
281 +[[image:image-20230805155335-1.png||height="145" width="724"]]
317 317  
283 +
284 +**2) When the sensor detects invalid data:**
285 +
286 +[[image:image-20230805155428-2.png||height="139" width="726"]]
287 +
288 +
289 +**3) When the sensor is not connected:**
290 +
291 +[[image:image-20230805155515-3.png||height="143" width="725"]]
292 +
293 +
294 +==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
295 +
296 +
318 318  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
319 319  
320 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
299 +Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
321 321  
322 322  **Example:**
323 323  
324 -0x00: Normal uplink packet.
303 +If byte[0]&0x01=0x00 : Normal uplink packet.
325 325  
326 -0x01: Interrupt Uplink Packet.
305 +If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
327 327  
328 328  
329 -=== 2.3.6 LiDAR temp ===
308 +==== (% style="color:blue" %)**LiDAR temp**(%%) ====
330 330  
331 331  
332 332  Characterize the internal temperature value of the sensor.
... ... @@ -336,7 +336,7 @@
336 336  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
337 337  
338 338  
339 -=== 2.3.7 Message Type ===
318 +==== (% style="color:blue" %)**Message Type**(%%) ====
340 340  
341 341  
342 342  (((
... ... @@ -349,248 +349,160 @@
349 349  
350 350  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
351 351  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
352 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
353 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
331 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
332 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
354 354  
334 +[[image:image-20230805150315-4.png||height="233" width="723"]]
355 355  
356 356  
357 -=== 2.3.8 Decode payload in The Things Network ===
337 +=== 2.3.3 Historical measuring distance, FPORT~=3 ===
358 358  
359 359  
360 -While using TTN network, you can add the payload format to decode the payload.
340 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
361 361  
362 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
342 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
363 363  
344 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
345 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
346 +**Size(bytes)**
347 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
348 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
349 +Reserve(0xFF)
350 +)))|Distance|Distance signal strength|(% style="width:88px" %)(((
351 +LiDAR temp
352 +)))|(% style="width:85px" %)Unix TimeStamp
364 364  
365 -(((
366 -The payload decoder function for TTN is here:
367 -)))
354 +**Interrupt flag & Interrupt level:**
368 368  
369 -(((
370 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
357 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
358 +**Size(bit)**
359 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
360 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
361 +Interrupt flag
371 371  )))
372 372  
373 -
374 -== 2.4 Uplink Interval ==
375 -
376 -
377 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
378 -
379 -
380 -== 2.5 ​Show Data in DataCake IoT Server ==
381 -
382 -
383 -(((
384 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
364 +* (((
365 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
385 385  )))
386 386  
368 +For example, in the US915 band, the max payload for different DR is:
387 387  
388 -(((
389 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
390 -)))
370 +**a) DR0:** max is 11 bytes so one entry of data
391 391  
392 -(((
393 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
394 -)))
372 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
395 395  
374 +**c) DR2:** total payload includes 11 entries of data
396 396  
397 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
376 +**d) DR3:** total payload includes 22 entries of data.
398 398  
378 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
399 399  
400 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
401 401  
381 +**Downlink:**
402 402  
403 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
383 +0x31 64 CC 68 0C 64 CC 69 74 05
404 404  
405 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
385 +[[image:image-20230805144936-2.png||height="113" width="746"]]
406 406  
407 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
387 +**Uplink:**
408 408  
389 +43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
409 409  
410 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
411 411  
412 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
392 +**Parsed Value:**
413 413  
394 +[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
414 414  
415 -== 2.6 Datalog Feature ==
416 416  
397 +[360,176,30,High,True,2023-08-04 02:53:00],
417 417  
418 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
399 +[355,168,30,Low,False,2023-08-04 02:53:29],
419 419  
401 +[245,211,30,Low,False,2023-08-04 02:54:29],
420 420  
421 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
403 +[57,700,30,Low,False,2023-08-04 02:55:29],
422 422  
405 +[361,164,30,Low,True,2023-08-04 02:56:00],
423 423  
424 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
407 +[337,184,30,Low,False,2023-08-04 02:56:40],
425 425  
426 -* (((
427 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
428 -)))
429 -* (((
430 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
431 -)))
409 +[20,4458,30,Low,False,2023-08-04 02:57:40],
432 432  
433 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
411 +[362,173,30,Low,False,2023-08-04 02:58:53],
434 434  
435 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
436 436  
414 +**History read from serial port:**
437 437  
438 -=== 2.6.2 Unix TimeStamp ===
416 +[[image:image-20230805145056-3.png]]
439 439  
440 440  
441 -LDS12-LB uses Unix TimeStamp format based on
419 +=== 2.3.4 Decode payload in The Things Network ===
442 442  
443 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
444 444  
445 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
422 +While using TTN network, you can add the payload format to decode the payload.
446 446  
447 -Below is the converter example
424 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
448 448  
449 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
450 450  
451 -
452 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
453 -
454 -
455 -=== 2.6.3 Set Device Time ===
456 -
457 -
458 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
459 -
460 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
461 -
462 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
463 -
464 -
465 -=== 2.6.4 Poll sensor value ===
466 -
467 -
468 -Users can poll sensor values based on timestamps. Below is the downlink command.
469 -
470 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
471 -|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
472 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
473 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
474 -
475 475  (((
476 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
428 +The payload decoder function for TTN is here:
477 477  )))
478 478  
479 479  (((
480 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
432 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
481 481  )))
482 482  
483 -(((
484 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
485 -)))
486 486  
487 -(((
488 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
489 -)))
436 +== 2.4 ​Show Data in DataCake IoT Server ==
490 490  
491 491  
492 -== 2.7 Frequency Plans ==
493 -
494 -
495 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
496 -
497 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
498 -
499 -
500 -== 2.8 LiDAR ToF Measurement ==
501 -
502 -=== 2.8.1 Principle of Distance Measurement ===
503 -
504 -
505 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
506 -
507 -
508 -[[image:1654831757579-263.png]]
509 -
510 -
511 -=== 2.8.2 Distance Measurement Characteristics ===
512 -
513 -
514 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
515 -
516 -[[image:1654831774373-275.png]]
517 -
518 -
519 519  (((
520 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
440 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
521 521  )))
522 522  
443 +
523 523  (((
524 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
445 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
525 525  )))
526 526  
527 527  (((
528 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
449 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
529 529  )))
530 530  
531 531  
532 -(((
533 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
534 -)))
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
535 535  
536 536  
537 -[[image:1654831797521-720.png]]
456 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
538 538  
539 539  
540 -(((
541 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
542 -)))
459 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
543 543  
544 -[[image:1654831810009-716.png]]
461 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
545 545  
463 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
546 546  
547 -(((
548 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
549 -)))
550 550  
466 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
551 551  
552 -=== 2.8.3 Notice of usage: ===
468 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
553 553  
554 554  
555 -Possible invalid /wrong reading for LiDAR ToF tech:
471 +== 2.5 Frequency Plans ==
556 556  
557 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
558 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
559 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
560 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
561 561  
562 -=== 2.8.4  Reflectivity of different objects ===
474 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
563 563  
476 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
564 564  
565 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
566 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
567 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
568 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
569 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
570 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
571 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
572 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
573 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
574 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
575 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
576 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
577 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
578 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
579 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
580 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
581 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
582 -Unpolished white metal surface
583 -)))|(% style="width:93px" %)130%
584 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
585 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
586 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
587 587  
588 -= 3. Configure LDS12-LB =
479 += 3. Configure DS20L =
589 589  
590 590  == 3.1 Configure Methods ==
591 591  
592 592  
593 -LDS12-LB supports below configure method:
484 +DS20L supports below configure method:
594 594  
595 595  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
596 596  
... ... @@ -612,10 +612,10 @@
612 612  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
613 613  
614 614  
615 -== 3.3 Commands special design for LDS12-LB ==
506 +== 3.3 Commands special design for DS20L ==
616 616  
617 617  
618 -These commands only valid for LDS12-LB, as below:
509 +These commands only valid for DS20L, as below:
619 619  
620 620  
621 621  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -630,7 +630,7 @@
630 630  )))
631 631  
632 632  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
633 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
524 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
634 634  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
635 635  30000
636 636  OK
... ... @@ -657,26 +657,31 @@
657 657  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
658 658  )))
659 659  * (((
660 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
551 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
661 661  )))
662 662  
554 +
663 663  === 3.3.2 Set Interrupt Mode ===
664 664  
665 665  
666 -Feature, Set Interrupt mode for PA8 of pin.
558 +Feature, Set Interrupt mode for pin of GPIO_EXTI.
667 667  
668 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
560 +When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
669 669  
670 670  (% style="color:blue" %)**AT Command: AT+INTMOD**
671 671  
672 672  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
673 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
565 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
674 674  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
675 675  0
676 676  OK
677 677  the mode is 0 =Disable Interrupt
678 678  )))
679 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
571 +|(% style="width:154px" %)(((
572 +AT+INTMOD=3
573 +
574 +(default)
575 +)))|(% style="width:196px" %)(((
680 680  Set Transmit Interval
681 681  0. (Disable Interrupt),
682 682  ~1. (Trigger by rising and falling edge)
... ... @@ -695,89 +695,77 @@
695 695  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
696 696  
697 697  
698 -=== 3.3.3 Get Firmware Version Info ===
699 699  
595 +== 3.3.3 Set work mode ==
700 700  
701 -Feature: use downlink to get firmware version.
702 702  
703 -(% style="color:#037691" %)**Downlink Command: 0x26**
598 +Feature: Switch working mode
704 704  
705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
706 -|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
707 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
600 +(% style="color:blue" %)**AT Command: AT+MOD**
708 708  
709 -* Reply to the confirmation package: 26 01
710 -* Reply to non-confirmed packet: 26 00
602 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
603 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response**
604 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
605 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
606 +OK
711 711  
712 -Device will send an uplink after got this downlink command. With below payload:
713 -
714 -Configures info payload:
715 -
716 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
717 -|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
718 -**Size(bytes)**
719 -)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
720 -|**Value**|Software Type|(((
721 -Frequency
722 -Band
723 -)))|Sub-band|(((
724 -Firmware
725 -Version
726 -)))|Sensor Type|Reserve|(((
727 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
728 -Always 0x02
608 +Attention:Take effect after ATZ
729 729  )))
730 730  
731 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
611 +(% style="color:blue" %)**Downlink Command:**
732 732  
733 -(% style="color:#037691" %)**Frequency Band**:
613 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
734 734  
735 -*0x01: EU868
615 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
736 736  
737 -*0x02: US915
738 738  
739 -*0x03: IN865
618 +=== 3.3.4 Set threshold and threshold mode ===
740 740  
741 -*0x04: AU915
742 742  
743 -*0x05: KZ865
621 +Feature, Set threshold and threshold mode
744 744  
745 -*0x06: RU864
623 +When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms.
746 746  
747 -*0x07: AS923
625 +**AT Command: AT+DOL**
748 748  
749 -*0x08: AS923-1
627 +(% border="1" cellspacing="4" style="width:571.818px" %)
628 +|(% style="width:172px" %)**Command Example**|(% style="width:279px" %)**Function**|(% style="width:118px" %)**Response**
629 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
630 +0,0,0,0,400
750 750  
751 -*0x09: AS923-2
632 +OK
633 +)))
634 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
752 752  
753 -*0xa0: AS923-3
754 754  
637 +(% border="1" cellspacing="4" style="width:668.818px" %)
638 +|(% rowspan="11" style="width:166px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits
639 +|(% style="width:251px" %)1:Use upper and lower limits
640 +|(% style="width:251px" %)2:Less than the lower limit
641 +|(% style="width:251px" %)3:Greater than the lower limit
642 +|(% style="width:251px" %)4:Less than the upper limit
643 +|(% style="width:251px" %)5: Greater than the upper limit
644 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
645 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
646 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
647 +|(% style="width:251px" %)1 Person or object counting statistics
648 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
649 +0~~10000ms
755 755  
756 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
651 +
652 +)))
757 757  
758 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
654 +**Downlink Command: 0x07**
759 759  
760 -(% style="color:#037691" %)**Sensor Type**:
656 +Format: Command Code (0x07) followed by 9bytes.
761 761  
762 -0x01: LSE01
658 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
659 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
763 763  
764 -0x02: LDDS75
765 -
766 -0x03: LDDS20
767 -
768 -0x04: LLMS01
769 -
770 -0x05: LSPH01
771 -
772 -0x06: LSNPK01
773 -
774 -0x07: LLDS12
775 -
776 -
777 777  = 4. Battery & Power Consumption =
778 778  
779 779  
780 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
664 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
781 781  
782 782  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
783 783  
... ... @@ -786,7 +786,7 @@
786 786  
787 787  
788 788  (% class="wikigeneratedid" %)
789 -User can change firmware LDS12-LB to:
673 +User can change firmware DS20L to:
790 790  
791 791  * Change Frequency band/ region.
792 792  
... ... @@ -794,7 +794,7 @@
794 794  
795 795  * Fix bugs.
796 796  
797 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
681 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
798 798  
799 799  Methods to Update Firmware:
800 800  
... ... @@ -804,10 +804,10 @@
804 804  
805 805  = 6. FAQ =
806 806  
807 -== 6.1 What is the frequency plan for LDS12-LB? ==
691 +== 6.1 What is the frequency plan for DS20L? ==
808 808  
809 809  
810 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
694 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
811 811  
812 812  
813 813  = 7. Trouble Shooting =
... ... @@ -822,11 +822,11 @@
822 822  
823 823  
824 824  (((
825 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
709 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
826 826  )))
827 827  
828 828  (((
829 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
713 +(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
830 830  )))
831 831  
832 832  
... ... @@ -835,7 +835,7 @@
835 835  )))
836 836  
837 837  (((
838 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
722 +(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
839 839  )))
840 840  
841 841  
... ... @@ -842,7 +842,7 @@
842 842  = 8. Order Info =
843 843  
844 844  
845 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
729 +Part Number: (% style="color:blue" %)**DS20L-XXX**
846 846  
847 847  (% style="color:red" %)**XXX**(%%): **The default frequency band**
848 848  
... ... @@ -867,7 +867,7 @@
867 867  
868 868  (% style="color:#037691" %)**Package Includes**:
869 869  
870 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
754 +* DS20L LoRaWAN Smart Distance Detector x 1
871 871  
872 872  (% style="color:#037691" %)**Dimension and weight**:
873 873  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content