Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -99,28 +99,143 @@ 99 99 * Sleep Mode: 5uA @ 3.3v 100 100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 101 101 102 -== 1.4 Applications==102 +== 1.4 Suitable Container & Liquid == 103 103 104 104 105 -* Horizontal distance measurement 106 -* Parking management system 107 -* Object proximity and presence detection 108 -* Intelligent trash can management system 109 -* Robot obstacle avoidance 110 -* Automatic control 111 -* Sewer 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 112 112 113 113 (% style="display:none" %) 114 114 115 -== 1.5 S leepmode and working mode==114 +== 1.5 Install LDS12-LB == 116 116 117 117 117 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 118 + 119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 120 + 121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 122 + 123 + 124 +((( 125 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 126 +))) 127 + 128 +((( 129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 130 +))) 131 + 132 +[[image:image-20230613143052-5.png]] 133 + 134 + 135 +No polish needed if the container is shine metal surface without paint or non-metal container. 136 + 137 +[[image:image-20230613143125-6.png]] 138 + 139 + 140 +((( 141 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 142 +))) 143 + 144 +((( 145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 146 +))) 147 + 148 +((( 149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 150 +))) 151 + 152 +((( 153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 154 +))) 155 + 156 + 157 +((( 158 +(% style="color:blue" %)**LED Status:** 159 +))) 160 + 161 +* ((( 162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 163 +))) 164 + 165 +* ((( 166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 167 +))) 168 +* ((( 169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 170 +))) 171 + 172 +((( 173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 174 +))) 175 + 176 + 177 +((( 178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 179 +))) 180 + 181 + 182 +((( 183 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 184 +))) 185 + 186 +((( 187 +Prepare Eproxy AB glue. 188 +))) 189 + 190 +((( 191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 192 +))) 193 + 194 +((( 195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking. 196 +))) 197 + 198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 199 + 200 + 201 +((( 202 +(% style="color:red" %)**Note :** 203 + 204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 205 +))) 206 + 207 +((( 208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 209 +))) 210 + 211 + 212 +== 1.6 Applications == 213 + 214 + 215 +* Smart liquid control solution 216 + 217 +* Smart liquefied gas solution 218 + 219 +== 1.7 Precautions == 220 + 221 + 222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 223 + 224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 225 + 226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 227 + 228 +(% style="display:none" %) 229 + 230 +== 1.8 Sleep mode and working mode == 231 + 232 + 118 118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 119 119 120 120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 121 121 122 122 123 -== 1. 6Button & LEDs ==238 +== 1.9 Button & LEDs == 124 124 125 125 126 126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -139,7 +139,7 @@ 139 139 ))) 140 140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 141 141 142 -== 1. 7BLE connection ==257 +== 1.10 BLE connection == 143 143 144 144 145 145 LDS12-LB support BLE remote configure. ... ... @@ -153,15 +153,14 @@ 153 153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 154 154 155 155 156 -== 1. 8Pin Definitions ==271 +== 1.11 Pin Definitions == 157 157 158 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]273 +[[image:image-20230523174230-1.png]] 159 159 160 160 276 +== 1.12 Mechanical == 161 161 162 -== 1.9 Mechanical == 163 163 164 - 165 165 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 166 166 167 167 ... ... @@ -238,7 +238,7 @@ 238 238 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 239 239 240 240 241 -== 2.3 Uplink Payload == 355 +== 2.3 Uplink Payload == 242 242 243 243 244 244 ((( ... ... @@ -246,26 +246,24 @@ 246 246 ))) 247 247 248 248 ((( 249 -Uplink payload includes in total 11bytes.363 +Uplink payload includes in total 8 bytes. 250 250 ))) 251 251 252 - 253 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 254 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)((( 366 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 367 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 255 255 **Size(bytes)** 256 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1** 257 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)((( 258 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 259 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|((( 260 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 261 -)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|((( 262 -[[Message Type>>||anchor="H2.3.7MessageType"]] 263 -))) 369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 371 +[[Distance>>||anchor="H2.3.2A0Distance"]] 372 +(unit: mm) 373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 264 264 265 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 266 266 267 267 268 -=== 2.3.1 Battery Info === 380 +=== 2.3.1 Battery Info === 269 269 270 270 271 271 Check the battery voltage for LDS12-LB. ... ... @@ -275,50 +275,28 @@ 275 275 Ex2: 0x0B49 = 2889mV 276 276 277 277 278 -=== 2.3.2 D S18B20 Temperaturesensor===390 +=== 2.3.2 Distance === 279 279 280 280 281 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 393 +((( 394 +Get the distance. Flat object range 20mm - 2000mm. 395 +))) 282 282 397 +((( 398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 283 283 284 -**Example**: 400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 401 +))) 285 285 286 -If payloadis:0105H: (0105 & FC00==0),temp=0105H /10 = 26.1degree403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 287 287 288 -If payloadis:FF3FH:(FF3F& FC00==1), temp=(FF3FH-65536)/10= -19.3degrees.405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 289 289 407 +=== 2.3.3 Interrupt Pin === 290 290 291 -=== 2.3.3 Distance === 292 292 410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 293 293 294 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 295 - 296 - 297 -**Example**: 298 - 299 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 300 - 301 - 302 -=== 2.3.4 Distance signal strength === 303 - 304 - 305 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 306 - 307 - 308 -**Example**: 309 - 310 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 311 - 312 -Customers can judge whether they need to adjust the environment based on the signal strength. 313 - 314 - 315 -=== 2.3.5 Interrupt Pin === 316 - 317 - 318 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 319 - 320 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 321 - 322 322 **Example:** 323 323 324 324 0x00: Normal uplink packet. ... ... @@ -326,58 +326,51 @@ 326 326 0x01: Interrupt Uplink Packet. 327 327 328 328 329 -=== 2.3. 6LiDARtemp ===419 +=== 2.3.4 DS18B20 Temperature sensor === 330 330 331 331 332 - Characterizetheinternaltemperature valueofthesensor.422 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 333 333 334 -**Example: ** 335 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 336 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 424 +**Example**: 337 337 426 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 338 338 339 -=== 2.3.7MessageType===428 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 340 340 341 341 431 +=== 2.3.5 Sensor Flag === 432 + 433 + 342 342 ((( 343 - Fora normal uplink payload, themessagetypeis always0x01.435 +0x01: Detect Ultrasonic Sensor 344 344 ))) 345 345 346 346 ((( 347 - ValidMessage Type:439 +0x00: No Ultrasonic Sensor 348 348 ))) 349 349 350 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 351 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 352 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 353 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 354 354 443 +=== 2.3.6 Decode payload in The Things Network === 355 355 356 356 357 -=== 2.3.8 Decode payload in The Things Network === 358 - 359 - 360 360 While using TTN network, you can add the payload format to decode the payload. 361 361 362 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L LDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 363 363 450 +The payload decoder function for TTN V3 is here: 364 364 365 365 ((( 366 -T hepayloaddecoderfunctionforTTNis here:453 +LDS12-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 367 367 ))) 368 368 369 -((( 370 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 371 -))) 372 372 457 +== 2.4 Uplink Interval == 373 373 374 -== 2.4 Uplink Interval == 375 375 376 - 377 377 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 378 378 379 379 380 -== 2.5 Show Data in DataCake IoT Server == 463 +== 2.5 Show Data in DataCake IoT Server == 381 381 382 382 383 383 ((( ... ... @@ -497,94 +497,6 @@ 497 497 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 498 498 499 499 500 -== 2.8 LiDAR ToF Measurement == 501 - 502 -=== 2.8.1 Principle of Distance Measurement === 503 - 504 - 505 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 506 - 507 - 508 -[[image:1654831757579-263.png]] 509 - 510 - 511 -=== 2.8.2 Distance Measurement Characteristics === 512 - 513 - 514 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 515 - 516 -[[image:1654831774373-275.png]] 517 - 518 - 519 -((( 520 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 521 -))) 522 - 523 -((( 524 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 525 -))) 526 - 527 -((( 528 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 529 -))) 530 - 531 - 532 -((( 533 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 534 -))) 535 - 536 - 537 -[[image:1654831797521-720.png]] 538 - 539 - 540 -((( 541 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 542 -))) 543 - 544 -[[image:1654831810009-716.png]] 545 - 546 - 547 -((( 548 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 549 -))) 550 - 551 - 552 -=== 2.8.3 Notice of usage: === 553 - 554 - 555 -Possible invalid /wrong reading for LiDAR ToF tech: 556 - 557 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 558 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 559 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 560 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 561 - 562 -=== 2.8.4 Reflectivity of different objects === 563 - 564 - 565 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 566 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity 567 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 568 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 569 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 570 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 571 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 572 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 573 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 574 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 575 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 576 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 577 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 578 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 579 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 580 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 581 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 582 -Unpolished white metal surface 583 -)))|(% style="width:93px" %)130% 584 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 585 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 586 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 587 - 588 588 = 3. Configure LDS12-LB = 589 589 590 590 == 3.1 Configure Methods == ... ... @@ -658,6 +658,9 @@ 658 658 ))) 659 659 * ((( 660 660 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 656 + 657 + 658 + 661 661 ))) 662 662 663 663 === 3.3.2 Set Interrupt Mode === ... ... @@ -694,86 +694,6 @@ 694 694 695 695 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 696 696 697 - 698 -=== 3.3.3 Get Firmware Version Info === 699 - 700 - 701 -Feature: use downlink to get firmware version. 702 - 703 -(% style="color:#037691" %)**Downlink Command: 0x26** 704 - 705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %) 706 -|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)** 707 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2 708 - 709 -* Reply to the confirmation package: 26 01 710 -* Reply to non-confirmed packet: 26 00 711 - 712 -Device will send an uplink after got this downlink command. With below payload: 713 - 714 -Configures info payload: 715 - 716 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 717 -|=(% style="background-color:#D9E2F3;color:#0070C0" %)((( 718 -**Size(bytes)** 719 -)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 720 -|**Value**|Software Type|((( 721 -Frequency 722 -Band 723 -)))|Sub-band|((( 724 -Firmware 725 -Version 726 -)))|Sensor Type|Reserve|((( 727 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 728 -Always 0x02 729 -))) 730 - 731 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12 732 - 733 -(% style="color:#037691" %)**Frequency Band**: 734 - 735 -*0x01: EU868 736 - 737 -*0x02: US915 738 - 739 -*0x03: IN865 740 - 741 -*0x04: AU915 742 - 743 -*0x05: KZ865 744 - 745 -*0x06: RU864 746 - 747 -*0x07: AS923 748 - 749 -*0x08: AS923-1 750 - 751 -*0x09: AS923-2 752 - 753 -*0xa0: AS923-3 754 - 755 - 756 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08 757 - 758 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 759 - 760 -(% style="color:#037691" %)**Sensor Type**: 761 - 762 -0x01: LSE01 763 - 764 -0x02: LDDS75 765 - 766 -0x03: LDDS20 767 - 768 -0x04: LLMS01 769 - 770 -0x05: LSPH01 771 - 772 -0x06: LSNPK01 773 - 774 -0x07: LLDS12 775 - 776 - 777 777 = 4. Battery & Power Consumption = 778 778 779 779