Last modified by Mengting Qiu on 2023/12/14 11:15

From version 82.10
edited by Xiaoling
on 2023/06/14 17:00
Change comment: There is no comment for this version
To version 70.6
edited by Xiaoling
on 2023/06/12 17:29
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DDS75-LB -- LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,12 +1,9 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230612170349-1.png||height="656" width="656"]]
3 3  
4 4  
5 5  
6 6  
7 -
8 -
9 -
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,26 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
18 +== 1.1 What is LoRaWAN Distance Detection Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
21 +The Dragino DDS75-LB is a (% style="color:blue" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:blue" %)** ultrasonic sensing technology**(%%) for (% style="color:blue" %)**distance measurement**(%%), and (% style="color:blue" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The DDS75-LB can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23 +It detects the distance(% style="color:blue" %)**  between the measured object and the sensor**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25 +The LoRa wireless technology used in SW3L-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27 +SW3L-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
29 +SW3L-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
31 +Each SW3L-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 +[[image:image-20230612170943-2.png||height="525" width="912"]]
37 37  
38 -[[image:image-20230614162334-2.png||height="468" width="800"]]
39 39  
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
... ... @@ -44,41 +44,52 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
42 +* Distance Detection by Ultrasonic technology
43 +* Flat object range 280mm - 7500mm
44 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
45 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
50 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
56 +(% style="color:#037691" %)**Rated environmental conditions:**
57 +
58 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
59 +|(% style="background-color:#d9e2f3; color:#0070c0; width:163px" %)**Item**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)(((
60 +**Minimum value**
61 +)))|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)(((
62 +**Typical value**
63 +)))|(% style="background-color:#d9e2f3; color:#0070c0; width:87px" %)(((
64 +**Maximum value**
65 +)))|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Unit**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Remarks**
66 +|(% style="width:174px" %)Storage temperature|(% style="width:86px" %)-25|(% style="width:66px" %)25|(% style="width:90px" %)80|(% style="width:48px" %)℃|(% style="width:203px" %)
67 +|(% style="width:174px" %)Storage humidity|(% style="width:86px" %) |(% style="width:66px" %)65%|(% style="width:90px" %)90%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
68 +|(% style="width:174px" %)Operating temperature|(% style="width:86px" %)-15|(% style="width:66px" %)25|(% style="width:90px" %)60|(% style="width:48px" %)℃|(% style="width:203px" %)
69 +|(% style="width:174px" %)Working humidity|(% style="width:86px" %)(((
70 +
71 +
72 +
73 +)))|(% style="width:66px" %)65%|(% style="width:90px" %)80%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
74 +
75 +(((
76 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);       **
77 +
78 +**~ b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
79 +
80 +
81 +)))
82 +
60 60  (% style="color:#037691" %)**Common DC Characteristics:**
61 61  
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,10 +99,25 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -== 1.4 Applications ==
103 103  
109 +== 1.4 Effective measurement range Reference beam pattern ==
104 104  
111 +
112 +**~1. The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
113 +
114 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852253176-749.png?rev=1.1||alt="1654852253176-749.png"]]
115 +
116 +
117 +**2. The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
118 +
119 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852175653-550.png?rev=1.1||alt="1654852175653-550.png"]]
120 +
121 +
122 +== 1.5 Applications ==
123 +
124 +
105 105  * Horizontal distance measurement
126 +* Liquid level measurement
106 106  * Parking management system
107 107  * Object proximity and presence detection
108 108  * Intelligent trash can management system
... ... @@ -109,12 +109,11 @@
109 109  * Robot obstacle avoidance
110 110  * Automatic control
111 111  * Sewer
133 +* Bottom water level monitoring
112 112  
113 -(% style="display:none" %)
135 +== 1.6 Sleep mode and working mode ==
114 114  
115 -== 1.5 Sleep mode and working mode ==
116 116  
117 -
118 118  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 119  
120 120  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -142,8 +142,9 @@
142 142  == 1.7 BLE connection ==
143 143  
144 144  
145 -LDS12-LB support BLE remote configure.
165 +SW3L-LB support BLE remote configure.
146 146  
167 +
147 147  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 148  
149 149  * Press button to send an uplink
... ... @@ -155,13 +155,25 @@
155 155  
156 156  == 1.8 Pin Definitions ==
157 157  
158 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
179 +[[image:image-20230523174230-1.png]]
159 159  
160 160  
182 +== 1.9 Flow Sensor Spec ==
161 161  
162 -== 1.9 Mechanical ==
163 163  
185 +(((
186 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
187 +|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Model**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Probe**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Diameter**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Range**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**Max Pressure**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**Measure**
188 +|(% style="width:88px" %)SW3L-004|(% style="width:75px" %)DW-004|(% style="width:107px" %)G1/2" /DN15|(% style="width:101px" %)1~~30L/min|(% style="width:116px" %)≤ 2.0Mpa|(% style="width:124px" %)450 pulse = 1 L
189 +|(% style="width:88px" %)SW3L-006|(% style="width:75px" %)DW-006|(% style="width:107px" %)G3/4" /DN20|(% style="width:101px" %)1~~60L/min|(% style="width:116px" %)≤ 1.2Mpa|(% style="width:124px" %)390 pulse = 1 L
190 +|(% style="width:88px" %)SW3L-010|(% style="width:75px" %)DW-010|(% style="width:107px" %)G 1" /DN25|(% style="width:101px" %)2~~100L/min|(% style="width:116px" %)≤ 2.0Mpa|(% style="width:124px" %)64 pulse = 1 L
191 +)))
164 164  
193 +
194 +
195 +== 2.10 Mechanical ==
196 +
197 +
165 165  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
166 166  
167 167  
... ... @@ -171,19 +171,27 @@
171 171  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
172 172  
173 173  
174 -(% style="color:blue" %)**Probe Mechanical:**
207 +(% style="color:blue" %)**DW-004 Flow Sensor: diameter: G1/2” / DN15.  450 pulse = 1 L**
175 175  
209 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091350-1.png?width=722&height=385&rev=1.1||alt="image-20220519091350-1.png"]]
176 176  
177 177  
178 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
212 +(% style="color:blue" %)**006: DW-006 Flow Sensor: diameter: G3/4” / DN20.  390 pulse = 1 L**
179 179  
214 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091423-2.png?width=723&height=258&rev=1.1||alt="image-20220519091423-2.png"]]
180 180  
181 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
182 182  
217 +(% style="color:blue" %)**010: DW-010 Flow Sensor: diameter: G 1” / DN25. 64 pulse = 1 L**
218 +
219 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519091423-3.png?width=724&height=448&rev=1.1||alt="image-20220519091423-3.png"]]
220 +
221 +
222 += 2. Configure SW3L-LB to connect to LoRaWAN network =
223 +
183 183  == 2.1 How it works ==
184 184  
185 185  
186 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
227 +The SW3L-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SW3L-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
187 187  
188 188  (% style="display:none" %) (%%)
189 189  
... ... @@ -194,12 +194,12 @@
194 194  
195 195  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
196 196  
197 -[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
238 +[[image:image-20230612171032-3.png||height="492" width="855"]](% style="display:none" %)
198 198  
199 199  
200 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
241 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SW3L-LB.
201 201  
202 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
243 +Each SW3L-LB is shipped with a sticker with the default device EUI as below:
203 203  
204 204  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
205 205  
... ... @@ -228,10 +228,10 @@
228 228  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
229 229  
230 230  
231 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
272 +(% style="color:blue" %)**Step 2:**(%%) Activate on SW3L-LB
232 232  
233 233  
234 -Press the button for 5 seconds to activate the LDS12-LB.
275 +Press the button for 5 seconds to activate the SW3L-LB.
235 235  
236 236  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
237 237  
... ... @@ -240,194 +240,353 @@
240 240  
241 241  == 2.3 ​Uplink Payload ==
242 242  
284 +=== 2.3.1 Device Status, FPORT~=5 ===
243 243  
244 -(((
245 -LDS12-LB will uplink payload via LoRaWAN with below payload format: 
246 -)))
247 247  
248 -(((
249 -Uplink payload includes in total 11 bytes.
250 -)))
287 +Include device configure status. Once SW3L-LB Joined the network, it will uplink this message to the server. After that, SW3L-LB will uplink Device Status every 12 hours.
251 251  
289 +Users can use the downlink command(**0x26 01**) to ask SW3L-LB to send device configure detail, include device configure status. SW3L-LB will uplink a payload via FPort=5 to server.
252 252  
291 +The Payload format is as below.
292 +
293 +
253 253  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
254 -|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
255 -**Size(bytes)**
256 -)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
257 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
258 -[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
259 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
260 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
261 -)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
262 -[[Message Type>>||anchor="H2.3.7MessageType"]]
263 -)))
295 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
296 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
297 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
264 264  
265 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
299 +Example parse in TTNv3
266 266  
301 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652925144491-755.png?width=732&height=139&rev=1.1||alt="1652925144491-755.png"]]
267 267  
268 -=== 2.3.1 Battery Info ===
269 269  
304 +(% style="color:#037691" %)**Sensor Model**(%%): For SW3L-LB, this value is 0x11
270 270  
271 -Check the battery voltage for LDS12-LB.
306 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
272 272  
308 +(% style="color:#037691" %)**Frequency Band**:
309 +
310 +*0x01: EU868
311 +
312 +*0x02: US915
313 +
314 +*0x03: IN865
315 +
316 +*0x04: AU915
317 +
318 +*0x05: KZ865
319 +
320 +*0x06: RU864
321 +
322 +*0x07: AS923
323 +
324 +*0x08: AS923-1
325 +
326 +*0x09: AS923-2
327 +
328 +*0x0a: AS923-3
329 +
330 +*0x0b: CN470
331 +
332 +*0x0c: EU433
333 +
334 +*0x0d: KR920
335 +
336 +*0x0e: MA869
337 +
338 +
339 +(% style="color:#037691" %)**Sub-Band**:
340 +
341 +AU915 and US915:value 0x00 ~~ 0x08
342 +
343 +CN470: value 0x0B ~~ 0x0C
344 +
345 +Other Bands: Always 0x00
346 +
347 +
348 +(% style="color:#037691" %)**Battery Info**:
349 +
350 +Check the battery voltage.
351 +
273 273  Ex1: 0x0B45 = 2885mV
274 274  
275 275  Ex2: 0x0B49 = 2889mV
276 276  
277 277  
278 -=== 2.3.2 DS18B20 Temperature sensor ===
357 +=== 2.3.2 Sensor Configuration, FPORT~=4 ===
279 279  
280 280  
281 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
360 +SW3L-LB will only send this command after getting the downlink command (0x26 02) from the server.
282 282  
362 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
363 +|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %) **Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:105px" %)**3**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:96px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:105px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:74px" %)**1**
364 +|**Value**|(% style="width:104px" %)TDC(unit:sec)|(% style="width:43px" %)N/A|(% style="width:91px" %)Stop Timer|(% style="width:100px" %)Alarm Timer|(% style="width:69px" %)Reserve
283 283  
284 -**Example**:
366 +* (% style="color:#037691" %)**TDC: (default: 0x0004B0)**
285 285  
286 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
368 +Uplink interval for the total pulse count, default value is 0x0004B0 which is 1200 seconds = 20 minutes.
287 287  
288 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
289 289  
371 +* (% style="color:#037691" %)**STOP Duration & Alarm Timer**
290 290  
291 -=== 2.3.3 Distance ===
373 +Shows the configure value of [[Alarm for continuously water flow>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]
292 292  
375 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095747-2.png?width=723&height=113&rev=1.1||alt="image-20220519095747-2.png"]]
293 293  
294 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
295 295  
378 +=== 2.3.3 Water Flow Value, Uplink FPORT~=2 ===
296 296  
297 -**Example**:
298 298  
299 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
381 +(((
382 +SW3L-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And SW3L-LB will:
383 +)))
300 300  
385 +(((
386 +periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
387 +)))
301 301  
302 -=== 2.3.4 Distance signal strength ===
389 +(((
390 +Uplink Payload totals 11 bytes.
391 +)))
303 303  
393 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
394 +|=(% colspan="6" style="width: 510px;background-color:#D9E2F3;color:#0070C0" %)**Water Flow Value,  FPORT=2**
395 +|(% style="width:60px" %)**Size(bytes)**|(% style="width:130px" %)**1**|(% style="width:130px" %)**4**|(% style="width:30px" %)**1**|(% style="width:50px" %)**1**|(% style="width:80px" %)**4**
396 +|(% style="width:110px" %)**Value**|(% style="width:81px" %)Calculate Flag & [[Alarm>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]|(% style="width:95px" %)(((
397 +Total pulse Or Last Pulse
398 +)))|(% style="width:55px" %)MOD|(% style="width:115px" %)Reserve(0x01)|(% style="width:129px" %)[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
304 304  
305 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:470px" %)
401 +|=(% colspan="4" style="width: 470px;background-color:#D9E2F3;color:#0070C0" %)**Status & Alarm field**
402 +|(% style="width:60px" %)**Size(bit)**|(% style="width:80px" %)**6**|(% style="width:310px" %)**1**|(% style="width:20px" %)**1**
403 +|(% style="width:88px" %)**Value**|(% style="width:117px" %)Calculate Flag|(% style="width:221px" %)Alarm: 0: No Alarm; 1: Alarm|(% style="width:64px" %)N/A
306 306  
405 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-3.png?width=736&height=284&rev=1.1||alt="image-20220519095946-3.png"]]
307 307  
308 -**Example**:
309 309  
310 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
408 +* (((
409 +(% style="color:#037691" %)**Calculate Flag**
410 +)))
311 311  
312 -Customers can judge whether they need to adjust the environment based on the signal strength.
412 +(((
413 +The calculate flag is a user defined field, IoT server can use this flag to handle different meters with different pulse factors. For example, if there are 100 Flow Sensors, meters 1 ~~50 are 1 liter/pulse and meters 51 ~~ 100 has 1.5 liter/pulse.
414 +)))
313 313  
416 +(((
417 +**Example: in the default payload:**
418 +)))
314 314  
315 -=== 2.3.5 Interrupt Pin ===
420 +* (((
421 +calculate flag=0: for SW3L-004 Flow Sensor: 450 pulse = 1 L
422 +)))
423 +* (((
424 +calculate flag=1: for SW3L-006 Flow Sensor: 390 pulse = 1 L
425 +)))
426 +* (((
427 +calculate flag=2: for SW3L-010 Flow Sensor: 64 pulse = 1 L
428 +)))
316 316  
430 +(((
431 +Default value: 0. 
432 +)))
317 317  
318 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
434 +(((
435 +Range (6 bits): (b)000000 ~~ (b) 111111
319 319  
320 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
437 +If user use with a meter for example is 0.02L/pulse. To proper decode the correct value in server,
321 321  
322 -**Example:**
439 +1) User can set the Calculate Flag of this sensor to 3.
323 323  
324 -0x00: Normal uplink packet.
441 +2) In server side, when a sensor data arrive, the decoder will check the value of Calculate Flag, It the value is 3, the total volume = 0.02 x Pulse Count.
442 +)))
325 325  
326 -0x01: Interrupt Uplink Packet.
444 +(((
445 +(% style="color:red" %)**NOTE: User need to set Calculate Flag to proper value before use Flow Sensor. Downlink or AT Command see: **(%%)Refer: [[Set Calculate Flag>>||anchor="H3.3.6Setthecalculateflag"]]
446 +)))
327 327  
448 +* (((
449 +(% style="color:#037691" %)**Alarm**
450 +)))
328 328  
329 -=== 2.3.6 LiDAR temp ===
452 +(((
453 +See [[Alarm for continuously water flow>>||anchor="H3.3.4Alarmforcontinuouslywaterflow"]]
454 +)))
330 330  
456 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-4.png?width=724&height=65&rev=1.1||alt="image-20220519095946-4.png"]]
331 331  
332 -Characterize the internal temperature value of the sensor.
333 333  
334 -**Example: **
335 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
336 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
459 +* (((
460 +(% style="color:#037691" %)**Total pulse**
461 +)))
337 337  
463 +(((
464 +Total pulse/counting since factory
465 +)))
338 338  
339 -=== 2.3.7 Message Type ===
467 +(((
468 +Range (4 Bytes) : 0x00000000~~ 0xFFFFFFFF .
469 +)))
340 340  
471 +* (((
472 +(% style="color:#037691" %)**Last Pulse**
473 +)))
341 341  
342 342  (((
343 -For a normal uplink payload, the message type is always 0x01.
476 +Total pulse since last FPORT=2 uplink. (Default 20 minutes)
344 344  )))
345 345  
346 346  (((
347 -Valid Message Type:
480 +Range (4 Bytes) : 0x00000000~~ 0xFFFFFFFF .
348 348  )))
349 349  
350 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
351 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
352 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
353 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
483 +* (((
484 +(% style="color:#037691" %)**MOD: Default =0**
485 +)))
354 354  
487 +(((
488 +MOD=0 ~-~-> Uplink Total Pulse since factory
489 +)))
355 355  
491 +(((
492 +MOD=1 ~-~-> Uplink total pulse since last FPORT=2 uplink.
493 +)))
356 356  
357 -=== 2.3.8 Decode payload in The Things Network ===
495 +* (((
496 +(% style="color:#037691" %)**Water Flow Value**
497 +)))
358 358  
499 +(((
500 +**Total Water Flow Volume = (Calculate Flag) x (Total Pulse)=9597/450=21.3L**
501 +)))
359 359  
360 -While using TTN network, you can add the payload format to decode the payload.
503 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-5.png?width=727&height=50&rev=1.1||alt="image-20220519095946-5.png"]]
361 361  
362 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
363 363  
506 +(((
507 +**Total Water Flow for TDC timer = (Calculate Flag) x (Last Pulse)=79/450=0.2L**
508 +)))
364 364  
510 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/image-20220519095946-6.png?width=733&height=43&rev=1.1||alt="image-20220519095946-6.png"]] ** **
511 +
512 +
513 +=== 2.3.4 Historical Water Flow Status, FPORT~=3 ===
514 +
515 +
365 365  (((
366 -The payload decoder function for TTN is here:
517 +SW3L-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5DatalogFeature"]].
367 367  )))
368 368  
369 369  (((
370 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
521 +The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status.
371 371  )))
372 372  
524 +* (((
525 +Each data entry is 11 bytes and has the same structure as [[real time water flow status>>||anchor="H2.3.3A0WaterFlowValue2CUplinkFPORT3D2"]], to save airtime and battery, SW3L will send max bytes according to the current DR and Frequency bands.
526 +)))
373 373  
374 -== 2.4 Uplink Interval ==
528 +(((
529 +For example, in the US915 band, the max payload for different DR is:
530 +)))
375 375  
532 +(((
533 +(% style="color:blue" %)**a) DR0:**(%%) max is 11 bytes so one entry of data
534 +)))
376 376  
377 -The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
536 +(((
537 +(% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
538 +)))
378 378  
540 +(((
541 +(% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
542 +)))
379 379  
380 -== 2.5 ​Show Data in DataCake IoT Server ==
544 +(((
545 +(% style="color:blue" %)**d) DR3:**(%%) total payload includes 22 entries of data.
546 +)))
381 381  
548 +(((
549 +If SW3L-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
550 +)))
382 382  
383 383  (((
384 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
553 +(% style="color:#037691" %)**Downlink:**
385 385  )))
386 386  
556 +(((
557 +0x31 62 46 B1 F0 62 46 B3 94 07
558 +)))
387 387  
560 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652926690850-712.png?width=726&height=115&rev=1.1||alt="1652926690850-712.png"]]
561 +
562 +
388 388  (((
389 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
564 +(% style="color:#037691" %)**Uplink:**
390 390  )))
391 391  
392 392  (((
393 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
568 +00 00 01 00 00 00 00 62 46 B2 26 00 00 01 00 00 00 00 62 46 B2 5D 00 00 01 00 00 00 00 62 46 B2 99 00 00 01 00 00 00 00 62 46 B2 D5 00 00 01 00 00 01 15 62 46 B3 11 00 00 01 00 00 01 1F 62 46 B3 7E
394 394  )))
395 395  
571 +(((
572 +(% style="color:#037691" %)**Parsed Value:**
573 +)))
396 396  
397 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
575 +(((
576 +[Alarm, Calculate Flag, MOD, Total pulse or Last Pulse,** **Water Flow Value, TIME]
577 +)))
398 398  
399 399  
400 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
580 +(((
581 +[FALSE,0,0,0,0.0,2022-04-01 08:04:54],
582 +)))
401 401  
584 +(((
585 +[FALSE,0,0,0,0.0,2022-04-01 08:05:49],
586 +)))
402 402  
403 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
588 +(((
589 +[FALSE,0,0,0,0.0,2022-04-01 08:06:49],
590 +)))
404 404  
405 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
592 +(((
593 +[FALSE,0,0,0,0.0,2022-04-01 08:07:49],
594 +)))
406 406  
407 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
596 +(((
597 +[FALSE,0,0,277,0.6,2022-04-01 08:08:49],
598 +)))
408 408  
600 +(((
601 +[FALSE,0,0,287,0.6,2022-04-01 08:10:38],
602 +)))
409 409  
410 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
604 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SW3L%20LoRaWAN%20Outdoor%20Flow%20Sensor/WebHome/1652926777796-267.png?width=724&height=279&rev=1.1||alt="1652926777796-267.png"]]
411 411  
412 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
413 413  
607 +== 2.4 Payload Decoder file ==
414 414  
415 -== 2.6 Datalog Feature ==
416 416  
610 +In TTN, use can add a custom payload so it shows friendly reading
417 417  
418 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
612 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
419 419  
420 420  
421 -=== 2.6.1 Ways to get datalog via LoRaWAN ===
615 +== 2.5 Datalog Feature ==
422 422  
423 423  
424 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
618 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, SW3L-LB will store the reading for future retrieving purposes.
425 425  
620 +
621 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
622 +
623 +
624 +Set PNACKMD=1, SW3L-LB will wait for ACK for every uplink, when there is no LoRaWAN network,SW3L-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
625 +
426 426  * (((
427 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
627 +a) SW3L-LB will do an ACK check for data records sending to make sure every data arrive server.
428 428  )))
429 429  * (((
430 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
630 +b) SW3L-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but SW3L-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if SW3L-LB gets a ACK, SW3L-LB will consider there is a network connection and resend all NONE-ACK messages.
431 431  )))
432 432  
433 433  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -435,10 +435,10 @@
435 435  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
436 436  
437 437  
438 -=== 2.6.2 Unix TimeStamp ===
638 +=== 2.5.2 Unix TimeStamp ===
439 439  
440 440  
441 -LDS12-LB uses Unix TimeStamp format based on
641 +SW3L-LB uses Unix TimeStamp format based on
442 442  
443 443  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
444 444  
... ... @@ -452,17 +452,17 @@
452 452  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
453 453  
454 454  
455 -=== 2.6.3 Set Device Time ===
655 +=== 2.5.3 Set Device Time ===
456 456  
457 457  
458 458  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
459 459  
460 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
660 +Once SW3L-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to SW3L-LB. If SW3L-LB fails to get the time from the server, SW3L-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
461 461  
462 462  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
463 463  
464 464  
465 -=== 2.6.4 Poll sensor value ===
665 +=== 2.5.4 Poll sensor value ===
466 466  
467 467  
468 468  Users can poll sensor values based on timestamps. Below is the downlink command.
... ... @@ -485,299 +485,307 @@
485 485  )))
486 486  
487 487  (((
488 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
688 +Uplink Internal =5s,means SW3L-LB will send one packet every 5s. range 5~~255s.
489 489  )))
490 490  
491 491  
492 -== 2.7 Frequency Plans ==
692 +== 2.6 Frequency Plans ==
493 493  
494 494  
495 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
695 +The SW3L-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
496 496  
497 497  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
498 498  
499 499  
500 -== 2.8 LiDAR ToF Measurement ==
700 += 3. Configure SW3L-LB =
501 501  
502 -=== 2.8.1 Principle of Distance Measurement ===
702 +== 3.1 Configure Methods ==
503 503  
504 504  
505 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
705 +SW3L-LB supports below configure method:
506 506  
707 +* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
507 507  
508 -[[image:1654831757579-263.png]]
709 +* AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
509 509  
711 +* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
510 510  
511 -=== 2.8.2 Distance Measurement Characteristics ===
713 +== 3.2 General Commands ==
512 512  
513 513  
514 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
716 +These commands are to configure:
515 515  
516 -[[image:1654831774373-275.png]]
718 +* General system settings like: uplink interval.
517 517  
720 +* LoRaWAN protocol & radio related command.
518 518  
519 -(((
520 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
521 -)))
722 +They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
522 522  
523 -(((
524 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
525 -)))
724 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
526 526  
527 -(((
528 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
529 -)))
530 530  
727 +== 3.3 Commands special design for SW3L-LB ==
531 531  
532 -(((
533 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
534 -)))
535 535  
730 +These commands only valid for SW3L-LB, as below:
536 536  
537 -[[image:1654831797521-720.png]]
538 538  
733 +=== 3.3.1 Set Transmit Interval Time ===
539 539  
735 +
540 540  (((
541 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
737 +Feature: Change LoRaWAN End Node Transmit Interval.
542 542  )))
543 543  
544 -[[image:1654831810009-716.png]]
740 +(((
741 +(% style="color:blue" %)**AT Command: AT+TDC**
742 +)))
545 545  
744 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
745 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
746 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
747 +30000
748 +OK
749 +the interval is 30000ms = 30s
750 +)))
751 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
752 +OK
753 +Set transmit interval to 60000ms = 60 seconds
754 +)))
546 546  
547 547  (((
548 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
757 +(% style="color:blue" %)**Downlink Command: 0x01**
549 549  )))
550 550  
760 +(((
761 +Format: Command Code (0x01) followed by 3 bytes time value.
762 +)))
551 551  
552 -=== 2.8.3 Notice of usage: ===
764 +(((
765 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
766 +)))
553 553  
768 +* (((
769 +Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
770 +)))
771 +* (((
772 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
773 +)))
554 554  
555 -Possible invalid /wrong reading for LiDAR ToF tech:
775 +=== 3.3.2 Quit AT Command ===
556 556  
557 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
558 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
559 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
560 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
561 561  
562 -=== 2.8.4  Reflectivity of different objects ===
778 +Feature: Quit AT Command mode, so user needs to input the password again before using AT Commands.
563 563  
780 +(% style="color:blue" %)**AT Command: AT+DISAT**
564 564  
565 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
566 -|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
567 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
568 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
569 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
570 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
571 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
572 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
573 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
574 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
575 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
576 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
577 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
578 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
579 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
580 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
581 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
582 -Unpolished white metal surface
583 -)))|(% style="width:93px" %)130%
584 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
585 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
586 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
782 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:452px" %)
783 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 198px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 99px;background-color:#D9E2F3;color:#0070C0" %)**Response**
784 +|(% style="width:155px" %)AT+DISAT|(% style="width:198px" %)Quit AT Commands mode|(% style="width:96px" %)OK
587 587  
588 -= 3. Configure LDS12-LB =
786 +(% style="color:blue" %)**Downlink Command:**
589 589  
590 -== 3.1 Configure Methods ==
788 +No downlink command for this feature.
591 591  
592 592  
593 -LDS12-LB supports below configure method:
791 +=== 3.3.3 Get Device Status ===
594 594  
595 -* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
596 596  
597 -* AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
794 +Send a LoRaWAN downlink to ask device send Alarm settings.
598 598  
599 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
796 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
600 600  
601 -== 3.2 General Commands ==
798 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
602 602  
603 603  
604 -These commands are to configure:
801 +=== 3.3.4 Alarm for continuously water flow ===
605 605  
606 -* General system settings like: uplink interval.
607 607  
608 -* LoRaWAN protocol & radio related command.
804 +(((
805 +This feature is to monitor and send Alarm for continuously water flow.
806 +)))
609 609  
610 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
808 +(((
809 +Example case is for Toilet water monitoring, if some one push toilet button, the toilet will have water flow. If the toilet button has broken and can't returned to original state, the water flow will keep for hours or days which cause huge waste for water.
810 +)))
611 611  
612 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
812 +(((
813 +To monitor this faulty and send alarm, there are two settings:
814 +)))
613 613  
816 +* (((
817 +(% style="color:#4f81bd" %)**Stop Duration: Unit: Second**
818 +)))
614 614  
615 -== 3.3 Commands special design for LDS12-LB ==
820 +(((
821 +Default: 15s, If SW3L-LB didn't see any water flow in 15s, SW3L-LB will consider stop of water flow event.
822 +)))
616 616  
824 +* (((
825 +(% style="color:#4f81bd" %)**Alarm Timer: Units: Minute; Default 0 minutes (means Alarm disable)**
826 +)))
617 617  
618 -These commands only valid for LDS12-LB, as below:
828 +(((
829 +**Example:** 3 minutes, if SW3L-LB detect a start of water flow event and didn't detect a stop event within Alarm timer, SW3L-LB will send an Alarm to indicate a water flow abnormal alarm.
830 +)))
619 619  
832 +(((
833 +So for example, If we set stop duration=15s and Alarm Timer=3minutes. If the toilet water flow continuously for more than 3 minutes, Sensor will send an alarm (in Confirmed MODE) to platform.
834 +)))
620 620  
621 -=== 3.3.1 Set Transmit Interval Time ===
622 -
623 -
624 624  (((
625 -Feature: Change LoRaWAN End Node Transmit Interval.
837 +(% style="color:red" %)**Note:** **After this alarm is send, sensor will consider a stop of water flow and count for another new event. So if water flow waste last for 1 hour, Sensor will keep sending alarm every 3 minutes.**
626 626  )))
627 627  
628 628  (((
629 -(% style="color:blue" %)**AT Command: AT+TDC**
841 +(% style="color:#4f81bd" %)**AT Command**(%%) to configure:
630 630  )))
631 631  
632 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
633 -|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
634 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
635 -30000
636 -OK
637 -the interval is 30000ms = 30s
844 +* (((
845 +AT+PTRIG=15,3  ~-~-> Set Stop duration: 15s, Alarm Timer: 3 minutes.
638 638  )))
639 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
640 -OK
641 -Set transmit interval to 60000ms = 60 seconds
847 +
848 +* (((
849 +AT+ PTRIG=15,0  ~-~-> Default Value, disable water waste Alarm.
642 642  )))
643 643  
644 644  (((
645 -(% style="color:blue" %)**Downlink Command: 0x01**
853 +(% style="color:#4f81bd" %)**Downlink Command**(%%) to configure: 
646 646  )))
647 647  
648 648  (((
649 -Format: Command Code (0x01) followed by 3 bytes time value.
857 +Command: **0xAA aa bb cc**
650 650  )))
651 651  
652 652  (((
653 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
861 +AA: Command Type Code
654 654  )))
655 655  
656 -* (((
657 -Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
864 +(((
865 +aa: Stop duration
658 658  )))
659 -* (((
660 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
867 +
868 +(((
869 +bb cc: Alarm Timer
661 661  )))
662 662  
663 -=== 3.3.2 Set Interrupt Mode ===
872 +(((
873 +If user send 0xAA 0F 00 03: equal to AT+PTRIG=15,3
874 +)))
664 664  
665 665  
666 -Feature, Set Interrupt mode for PA8 of pin.
877 +=== 3.3.5 Clear Flash Record ===
667 667  
668 -When AT+INTMOD=0 is set, PA8 is used as a digital input port.
669 669  
670 -(% style="color:blue" %)**AT Command: AT+INTMOD**
880 +Feature: Clear flash storage for data log feature.
671 671  
672 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
673 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
674 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
675 -0
676 -OK
677 -the mode is 0 =Disable Interrupt
678 -)))
679 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
680 -Set Transmit Interval
681 -0. (Disable Interrupt),
682 -~1. (Trigger by rising and falling edge)
683 -2. (Trigger by falling edge)
684 -3. (Trigger by rising edge)
685 -)))|(% style="width:157px" %)OK
882 +(% style="color:blue" %)**AT Command: AT+CLRDTA**
686 686  
687 -(% style="color:blue" %)**Downlink Command: 0x06**
884 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
885 +|=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 169px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Response**
886 +|(% style="width:157px" %)AT+CLRDTA|(% style="width:169px" %)Clear flash storage for data log feature.|Clear all stored sensor data… OK
688 688  
689 -Format: Command Code (0x06) followed by 3 bytes.
888 +(((
889 +(% style="color:blue" %)**Downlink Command:**
890 +)))
690 690  
691 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
892 +(((
893 +* **Example**: 0xA301  ~/~/  Same as AT+CLRDTA
894 +)))
692 692  
693 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
694 694  
695 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
696 696  
898 +=== 3.3.6 Set the calculate flag ===
697 697  
698 -=== 3.3.3 Get Firmware Version Info ===
699 699  
901 +Feature: Set the calculate flag
700 700  
701 -Feature: use downlink to get firmware version.
903 +(% style="color:blue" %)**AT Command: AT+CALCFLAG**
702 702  
703 -(% style="color:#037691" %)**Downlink Command: 0x26**
905 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:461px" %)
906 +|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 193px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**Response**
907 +|(% style="width:158px" %)AT+CALCFLAG =1|(% style="width:192px" %)Set the calculate flag to 1.|(% style="width:109px" %)OK
908 +|(% style="width:158px" %)AT+CALCFLAG =2|(% style="width:192px" %)Set the calculate flag to 2.|(% style="width:109px" %)OK
704 704  
705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
706 -|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
707 -|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
910 +(% style="color:blue" %)**Downlink Command:**
708 708  
709 -* Reply to the confirmation package: 26 01
710 -* Reply to non-confirmed packet: 26 00
912 +* **Example**: 0XA501  ~/~/  Same as AT+CALCFLAG =1
711 711  
712 -Device will send an uplink after got this downlink command. With below payload:
914 +=== 3.3.7 Set count number ===
713 713  
714 -Configures info payload:
715 715  
716 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
717 -|=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
718 -**Size(bytes)**
719 -)))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
720 -|**Value**|Software Type|(((
721 -Frequency
722 -Band
723 -)))|Sub-band|(((
724 -Firmware
725 -Version
726 -)))|Sensor Type|Reserve|(((
727 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
728 -Always 0x02
729 -)))
917 +Feature: Manually set the count number
730 730  
731 -(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
919 +(% style="color:blue" %)**AT Command: AT+SETCNT**
732 732  
733 -(% style="color:#037691" %)**Frequency Band**:
921 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479px" %)
922 +|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 96px;background-color:#D9E2F3;color:#0070C0" %)**Response**
923 +|(% style="width:160px" %)AT+ SETCNT =0|(% style="width:221px" %)Set the count number to 0.|(% style="width:95px" %)OK
924 +|(% style="width:160px" %)AT+ SETCNT =100|(% style="width:221px" %)Set the count number to 100.|(% style="width:95px" %)OK
734 734  
735 -*0x01: EU868
926 +(% style="color:blue" %)**Downlink Command:**
736 736  
737 -*0x02: US915
928 +* **Example**: 0xA6000001  ~/~/  Same as AT+ SETCNT =1
738 738  
739 -*0x03: IN865
930 +* **Example**: 0xA6000064  ~/~/  Same as AT+ SETCNT =100
740 740  
741 -*0x04: AU915
932 +=== 3.3.8 Set Interrupt Mode ===
742 742  
743 -*0x05: KZ865
744 744  
745 -*0x06: RU864
935 +Feature, Set Interrupt mode for PA8 of pin.
746 746  
747 -*0x07: AS923
937 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
748 748  
749 -*0x08: AS923-1
939 +(% style="color:blue" %)**AT Command: AT+INTMOD**
750 750  
751 -*0x09: AS923-2
941 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
942 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
943 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
944 +0
945 +OK
946 +the mode is 0 =Disable Interrupt
947 +)))
948 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
949 +Set Transmit Interval
950 +0. (Disable Interrupt),
951 +~1. (Trigger by rising and falling edge)
952 +2. (Trigger by falling edge)
953 +3. (Trigger by rising edge)
954 +)))|(% style="width:157px" %)OK
752 752  
753 -*0xa0: AS923-3
956 +(% style="color:blue" %)**Downlink Command: 0x06**
754 754  
958 +Format: Command Code (0x06) followed by 3 bytes.
755 755  
756 -(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
960 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
757 757  
758 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
962 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
759 759  
760 -(% style="color:#037691" %)**Sensor Type**:
964 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
761 761  
762 -0x01: LSE01
966 +=== 3.3.9 Set work mode ===
763 763  
764 -0x02: LDDS75
765 765  
766 -0x03: LDDS20
969 +Feature: Manually set the work mode
767 767  
768 -0x04: LLMS01
769 769  
770 -0x05: LSPH01
972 +(% style="color:blue" %)**AT Command: AT+MOD**
771 771  
772 -0x06: LSNPK01
974 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
975 +|=(% style="width: 162px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 193px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 108px;background-color:#D9E2F3;color:#0070C0" %)**Response**
976 +|(% style="width:162px" %)AT+MOD=0|(% style="width:191px" %)Set the work mode to 0.|(% style="width:106px" %)OK
977 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the work mode to 1|(% style="width:106px" %)OK
773 773  
774 -0x07: LLDS12
979 +(% style="color:blue" %)**Downlink Command:**
775 775  
981 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
776 776  
983 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
984 +
777 777  = 4. Battery & Power Consumption =
778 778  
779 779  
780 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
988 +SW3L-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
781 781  
782 782  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
783 783  
... ... @@ -786,7 +786,7 @@
786 786  
787 787  
788 788  (% class="wikigeneratedid" %)
789 -User can change firmware LDS12-LB to:
997 +User can change firmware SW3L-LB to:
790 790  
791 791  * Change Frequency band/ region.
792 792  
... ... @@ -794,80 +794,82 @@
794 794  
795 795  * Fix bugs.
796 796  
797 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
1005 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
798 798  
799 799  Methods to Update Firmware:
800 800  
801 -* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1009 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
802 802  
803 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1011 +* Update through UART TTL interface. **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
804 804  
805 805  = 6. FAQ =
806 806  
807 -== 6.1 What is the frequency plan for LDS12-LB? ==
1015 +== 6.1  AT Commands input doesn't work ==
808 808  
809 809  
810 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1018 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
811 811  
812 812  
813 -= 7. Trouble Shooting =
1021 += 7. Order Info =
814 814  
815 -== 7.1 AT Command input doesn't work ==
816 816  
1024 +Part Number: (% style="color:blue" %)**SW3L-LB-XXX-YYY**
817 817  
818 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 +(% style="color:red" %)**XXX**(%%): The default frequency band
819 819  
1028 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
820 820  
821 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
1030 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
822 822  
1032 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
823 823  
1034 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1035 +
1036 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1037 +
1038 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1039 +
1040 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1041 +
1042 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1043 +
824 824  (((
825 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1045 +(% style="color:blue" %)**YYY**(%%): Flow Sensor Model:
826 826  )))
827 827  
828 828  (((
829 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
1049 + **004:** DW-004 Flow Sensor: diameter: G1/2” / DN15.  450 pulse = 1 L
830 830  )))
831 831  
832 -
833 833  (((
834 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1053 + **006:** DW-006 Flow Sensor: diameter: G3/4” / DN20. 390 pulse = 1 L
835 835  )))
836 836  
837 837  (((
838 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1057 + **010:** DW-010 Flow Sensor: diameter: G 1” / DN25. 64 pulse = 1 L
839 839  )))
840 840  
1060 +* (((
1061 +calculate flag=0: for SW3L-004 Flow Sensor: 450 pulse = 1 L
1062 +)))
841 841  
842 -= 8. Order Info =
1064 +* (((
1065 +calculate flag=1: for SW3L-006 Flow Sensor: 390 pulse = 1 L
1066 +)))
843 843  
1068 +* (((
1069 +calculate flag=2: for SW3L-010 Flow Sensor: 64  pulse = 1 L
844 844  
845 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
846 846  
847 -(% style="color:red" %)**XXX**(%%): **The default frequency band**
1072 +
1073 +)))
848 848  
849 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1075 += 8. ​Packing Info =
850 850  
851 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
852 852  
853 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
854 -
855 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
856 -
857 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
858 -
859 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
860 -
861 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
862 -
863 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
864 -
865 -= 9. ​Packing Info =
866 -
867 -
868 868  (% style="color:#037691" %)**Package Includes**:
869 869  
870 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
1080 +* SW3L-LB LoRaWAN Flow Sensor
871 871  
872 872  (% style="color:#037691" %)**Dimension and weight**:
873 873  
... ... @@ -879,7 +879,7 @@
879 879  
880 880  * Weight / pcs : g
881 881  
882 -= 10. Support =
1092 += 9. Support =
883 883  
884 884  
885 885  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
image-20230613100900-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -184.0 KB
Content
image-20230613102426-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -89.3 KB
Content
image-20230613102459-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -89.3 KB
Content
image-20230613133647-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -213.6 KB
Content
image-20230613133716-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -165.8 KB
Content
image-20230613140115-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.1 KB
Content
image-20230613140140-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.1 KB
Content
image-20230613143052-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -21.8 KB
Content
image-20230613143125-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.7 KB
Content
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content