Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -35,7 +35,7 @@ 35 35 36 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 3140115-3.png||height="453" width="800"]]38 +[[image:image-20230614162334-2.png||height="468" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -44,19 +44,16 @@ 44 44 * LoRaWAN 1.0.3 Class A 45 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 46 * Ultra-low power consumption 47 -* Liquid Level Measurement by Ultrasonic technology 48 -* Measure through container, No need to contact Liquid 49 -* Valid level range 20mm - 2000mm 50 -* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 51 -* Cable Length : 25cm 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 52 52 * Support Bluetooth v5.1 and LoRaWAN remote configure 53 53 * Support wireless OTA update firmware 54 54 * AT Commands to change parameters 55 55 * Downlink to change configure 56 -* IP66 Waterproof Enclosure 57 57 * 8500mAh Battery for long term use 58 58 59 - 60 60 == 1.3 Specification == 61 61 62 62 ... ... @@ -65,6 +65,23 @@ 65 65 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 66 66 * Operating Temperature: -40 ~~ 85°C 67 67 65 +(% style="color:#037691" %)**Probe Specification:** 66 + 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 81 + 68 68 (% style="color:#037691" %)**LoRa Spec:** 69 69 70 70 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -86,137 +86,23 @@ 86 86 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 87 87 88 88 89 -== 1.4 Suitable Container & Liquid == 90 90 104 +== 1.4 Applications == 91 91 92 -* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 93 -* Container shape is regular, and surface is smooth. 94 -* Container Thickness: 95 -** Pure metal material. 2~~8mm, best is 3~~5mm 96 -** Pure non metal material: <10 mm 97 -* Pure liquid without irregular deposition. 98 98 107 +* Horizontal distance measurement 108 +* Parking management system 109 +* Object proximity and presence detection 110 +* Intelligent trash can management system 111 +* Robot obstacle avoidance 112 +* Automatic control 113 +* Sewer 99 99 100 -(% style="display:none" %) 101 101 102 -== 1.5 Install LDS12-LB == 103 103 104 - 105 -(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 106 - 107 -LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 108 - 109 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 110 - 111 - 112 -((( 113 -(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 114 -))) 115 - 116 -((( 117 -For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 118 -))) 119 - 120 -[[image:image-20230613143052-5.png]] 121 - 122 - 123 -No polish needed if the container is shine metal surface without paint or non-metal container. 124 - 125 -[[image:image-20230613143125-6.png]] 126 - 127 - 128 -((( 129 -(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 130 -))) 131 - 132 -((( 133 -Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 134 -))) 135 - 136 -((( 137 -It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 138 -))) 139 - 140 -((( 141 -After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 142 -))) 143 - 144 - 145 -((( 146 -(% style="color:blue" %)**LED Status:** 147 -))) 148 - 149 -* ((( 150 -**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 151 -))) 152 - 153 -* ((( 154 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 155 -))) 156 -* ((( 157 -(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 158 -))) 159 - 160 -((( 161 -LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 162 -))) 163 - 164 - 165 -((( 166 -(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 167 -))) 168 - 169 - 170 -((( 171 -(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 172 -))) 173 - 174 -((( 175 -Prepare Eproxy AB glue. 176 -))) 177 - 178 -((( 179 -Put Eproxy AB glue in the sensor and press it hard on the container installation point. 180 -))) 181 - 182 -((( 183 -Reset LDS12-LB and see if the BLUE LED is slowly blinking. 184 -))) 185 - 186 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 187 - 188 - 189 -((( 190 -(% style="color:red" %)**Note :** 191 - 192 -(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 193 -))) 194 - 195 -((( 196 -(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 197 -))) 198 - 199 - 200 -== 1.6 Applications == 201 - 202 - 203 -* Smart liquid control solution 204 - 205 -* Smart liquefied gas solution 206 - 207 - 208 -== 1.7 Precautions == 209 - 210 - 211 -* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 212 - 213 -* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 214 - 215 -* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 216 - 217 217 (% style="display:none" %) 218 218 219 -== 1. 8Sleep mode and working mode ==119 +== 1.5 Sleep mode and working mode == 220 220 221 221 222 222 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. ... ... @@ -224,7 +224,7 @@ 224 224 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 225 225 226 226 227 -== 1. 9Button & LEDs ==127 +== 1.6 Button & LEDs == 228 228 229 229 230 230 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -243,10 +243,9 @@ 243 243 ))) 244 244 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 245 245 146 +== 1.7 BLE connection == 246 246 247 -== 1.10 BLE connection == 248 248 249 - 250 250 LDS12-LB support BLE remote configure. 251 251 252 252 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -258,14 +258,15 @@ 258 258 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 259 259 260 260 261 -== 1. 11Pin Definitions ==160 +== 1.8 Pin Definitions == 262 262 263 -[[image:image-20230 523174230-1.png]]162 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 264 264 265 265 266 -== 1.12 Mechanical == 267 267 166 +== 1.9 Mechanical == 268 268 168 + 269 269 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 270 270 271 271 ... ... @@ -277,10 +277,9 @@ 277 277 278 278 (% style="color:blue" %)**Probe Mechanical:** 279 279 280 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 281 281 282 282 283 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LD DS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]182 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 284 284 285 285 286 286 = 2. Configure LDS12-LB to connect to LoRaWAN network = ... ... @@ -299,7 +299,7 @@ 299 299 300 300 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 301 301 302 -[[image:image-2023061 3140140-4.png||height="453" width="800"]](% style="display:none" %)201 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %) 303 303 304 304 305 305 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -351,21 +351,23 @@ 351 351 ))) 352 352 353 353 ((( 354 -Uplink payload includes in total 8bytes.253 +Uplink payload includes in total 11 bytes. 355 355 ))) 356 356 256 + 357 357 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 358 358 |=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 359 359 **Size(bytes)** 360 -)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 361 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 362 -[[Distance>>||anchor="H2.3.2A0Distance"]] 363 -(unit: mm) 364 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 365 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 366 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 260 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1** 261 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 262 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 263 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 264 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 265 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 266 +[[Message Type>>||anchor="H2.3.7A0MessageType"]] 267 +))) 367 367 368 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]269 +[[image:1654833689380-972.png]] 369 369 370 370 371 371 === 2.3.1 Battery Info === ... ... @@ -378,74 +378,102 @@ 378 378 Ex2: 0x0B49 = 2889mV 379 379 380 380 381 -=== 2.3.2 D istance ===282 +=== 2.3.2 DS18B20 Temperature sensor === 382 382 383 383 384 -((( 385 -Get the distance. Flat object range 20mm - 2000mm. 386 -))) 285 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 387 387 388 -((( 389 -For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 390 390 391 -(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 392 -))) 288 +**Example**: 393 393 394 - *Ifthe sensor valueis 0x0000,itmeanssystemdoesn'tdetectultrasonicsensor.290 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 395 395 396 - *Ifthesensorvaluelowerthan0x0014(20mm), thesensorvaluewillbeinvalid.292 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 397 397 398 398 399 -=== 2.3.3 InterruptPin===295 +=== 2.3.3 Distance === 400 400 401 401 402 - Thisdatafieldshows if this packetisgeneratedbyinterruptornot.[[Clickhere>>||anchor="H3.3.2SetInterruptMode"]]for the hardwareandsoftwareset up.298 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 403 403 404 -**Example:** 405 405 406 - 0x00: Normal uplink packet.301 +**Example**: 407 407 408 -0x0 1:InterruptUplinkPacket.303 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 409 409 410 410 411 -=== 2.3.4 D S18B20 Temperature sensor ===306 +=== 2.3.4 Distance signal strength === 412 412 413 413 414 - Thisisoptional,usercanconnect externalDS18B20sensor to the+3.3v,1-wireand GND pin .andthisfieldwillreport temperature.309 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 415 415 311 + 416 416 **Example**: 417 417 418 -If payload is: 01 05H:(0105&FC00==0), temp=0105H/10=26.1degree314 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 419 419 420 - If payload is:FF3FH:(FF3F&FC00==1),temp=(FF3FH- 65536)/10 = -19.3 degrees.316 +Customers can judge whether they need to adjust the environment based on the signal strength. 421 421 422 422 423 -=== 2.3.5 SensorFlag===319 +=== 2.3.5 Interrupt Pin === 424 424 425 425 322 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 323 + 324 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 325 + 326 +**Example:** 327 + 328 +0x00: Normal uplink packet. 329 + 330 +0x01: Interrupt Uplink Packet. 331 + 332 + 333 +=== 2.3.6 LiDAR temp === 334 + 335 + 336 +Characterize the internal temperature value of the sensor. 337 + 338 +**Example: ** 339 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 340 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 341 + 342 + 343 +=== 2.3.7 Message Type === 344 + 345 + 426 426 ((( 427 - 0x01:DetectUltrasonicSensor347 +For a normal uplink payload, the message type is always 0x01. 428 428 ))) 429 429 430 430 ((( 431 - 0x00: No UltrasonicSensor351 +Valid Message Type: 432 432 ))) 433 433 354 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 355 +|=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload** 356 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 357 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 434 434 435 -=== 2.3.6 Decode payload in The Things Network === 436 436 360 +=== 2.3.8 Decode payload in The Things Network === 437 437 362 + 438 438 While using TTN network, you can add the payload format to decode the payload. 439 439 440 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 441 441 442 - The payload decoder function for TTN V3 is here:366 +[[image:1654592762713-715.png]] 443 443 368 + 444 444 ((( 445 - LDS12-LBTTNV3 PayloadDecoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]370 +The payload decoder function for TTN is here: 446 446 ))) 447 447 373 +((( 374 +LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 375 +))) 448 448 377 + 449 449 == 2.4 Uplink Interval == 450 450 451 451 ... ... @@ -572,6 +572,96 @@ 572 572 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 573 573 574 574 504 +== 2.8 LiDAR ToF Measurement == 505 + 506 +=== 2.8.1 Principle of Distance Measurement === 507 + 508 + 509 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 510 + 511 + 512 +[[image:1654831757579-263.png]] 513 + 514 + 515 +=== 2.8.2 Distance Measurement Characteristics === 516 + 517 + 518 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 519 + 520 +[[image:1654831774373-275.png]] 521 + 522 + 523 +((( 524 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 525 +))) 526 + 527 +((( 528 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 529 +))) 530 + 531 +((( 532 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 533 +))) 534 + 535 + 536 +((( 537 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 538 +))) 539 + 540 + 541 +[[image:1654831797521-720.png]] 542 + 543 + 544 +((( 545 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 546 +))) 547 + 548 +[[image:1654831810009-716.png]] 549 + 550 + 551 +((( 552 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 553 +))) 554 + 555 + 556 +=== 2.8.3 Notice of usage: === 557 + 558 + 559 +Possible invalid /wrong reading for LiDAR ToF tech: 560 + 561 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 562 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 563 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 564 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 565 + 566 + 567 +=== 2.8.4 Reflectivity of different objects === 568 + 569 + 570 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 571 +|=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity 572 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 573 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 574 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 575 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 576 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 577 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 578 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 579 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 580 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 581 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 582 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 583 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 584 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 585 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 586 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 587 +Unpolished white metal surface 588 +)))|(% style="width:93px" %)130% 589 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 590 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 591 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 592 + 593 + 575 575 = 3. Configure LDS12-LB = 576 576 577 577 == 3.1 Configure Methods == ... ... @@ -585,7 +585,6 @@ 585 585 586 586 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 587 587 588 - 589 589 == 3.2 General Commands == 590 590 591 591 ... ... @@ -685,7 +685,6 @@ 685 685 686 686 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 687 687 688 - 689 689 = 4. Battery & Power Consumption = 690 690 691 691 ... ... @@ -714,7 +714,6 @@ 714 714 715 715 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 716 716 717 - 718 718 = 6. FAQ = 719 719 720 720 == 6.1 What is the frequency plan for LDS12-LB? == ... ... @@ -775,7 +775,6 @@ 775 775 776 776 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 777 777 778 - 779 779 = 9. Packing Info = 780 780 781 781 ... ... @@ -793,7 +793,6 @@ 793 793 794 794 * Weight / pcs : g 795 795 796 - 797 797 = 10. Support = 798 798 799 799
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content