Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -21,19 +21,19 @@ 21 21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 22 22 23 23 24 -The Dragino L LDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 25 25 26 -The L LDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 27 27 28 28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 29 29 30 -The LoRa wireless technology used in D DS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 31 32 -D DS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 33 33 34 -D DS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 35 35 36 -Each D DS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 38 [[image:image-20230613140115-3.png||height="453" width="800"]] 39 39 ... ... @@ -99,12 +99,12 @@ 99 99 100 100 (% style="display:none" %) 101 101 102 -== 1.5 Install D DS20-LB ==102 +== 1.5 Install LDS12-LB == 103 103 104 104 105 105 (% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 106 106 107 -D DS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.107 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 108 108 109 109 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 110 110 ... ... @@ -130,15 +130,15 @@ 130 130 ))) 131 131 132 132 ((( 133 -Power on D DS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.133 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 134 134 ))) 135 135 136 136 ((( 137 -It is necessary to put the coupling paste between the sensor and the container, otherwise D DS20-LB won't detect the liquid level.137 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 138 138 ))) 139 139 140 140 ((( 141 -After paste the D DS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.141 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 142 142 ))) 143 143 144 144 ... ... @@ -158,7 +158,7 @@ 158 158 ))) 159 159 160 160 ((( 161 -LD DS20will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.161 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 162 162 ))) 163 163 164 164 ... ... @@ -180,7 +180,7 @@ 180 180 ))) 181 181 182 182 ((( 183 -Reset D DS20-LB and see if the BLUE LED is slowly blinking.183 +Reset LDS12-LB and see if the BLUE LED is slowly blinking. 184 184 ))) 185 185 186 186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] ... ... @@ -247,7 +247,7 @@ 247 247 == 1.10 BLE connection == 248 248 249 249 250 -D DS20-LB support BLE remote configure.250 +LDS12-LB support BLE remote configure. 251 251 252 252 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 253 253 ... ... @@ -283,12 +283,12 @@ 283 283 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 284 284 285 285 286 -= 2. Configure D DS20-LB to connect to LoRaWAN network =286 += 2. Configure LDS12-LB to connect to LoRaWAN network = 287 287 288 288 == 2.1 How it works == 289 289 290 290 291 -The D DS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.291 +The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 292 292 293 293 (% style="display:none" %) (%%) 294 294 ... ... @@ -302,9 +302,9 @@ 302 302 [[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 303 303 304 304 305 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from D DS20-LB.305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 306 306 307 -Each D DS20-LB is shipped with a sticker with the default device EUI as below:307 +Each LDS12-LB is shipped with a sticker with the default device EUI as below: 308 308 309 309 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 310 310 ... ... @@ -333,10 +333,10 @@ 333 333 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 334 334 335 335 336 -(% style="color:blue" %)**Step 2:**(%%) Activate on D DS20-LB336 +(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB 337 337 338 338 339 -Press the button for 5 seconds to activate the D DS20-LB.339 +Press the button for 5 seconds to activate the LDS12-LB. 340 340 341 341 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 342 342 ... ... @@ -347,7 +347,7 @@ 347 347 348 348 349 349 ((( 350 -D DS20-LB will uplink payload via LoRaWAN with below payload format:350 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 351 351 ))) 352 352 353 353 ((( ... ... @@ -371,7 +371,7 @@ 371 371 === 2.3.1 Battery Info === 372 372 373 373 374 -Check the battery voltage for D DS20-LB.374 +Check the battery voltage for LDS12-LB. 375 375 376 376 Ex1: 0x0B45 = 2885mV 377 377 ... ... @@ -442,7 +442,7 @@ 442 442 The payload decoder function for TTN V3 is here: 443 443 444 444 ((( 445 -D DS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]445 +LDS12-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 446 446 ))) 447 447 448 448 ... ... @@ -449,7 +449,7 @@ 449 449 == 2.4 Uplink Interval == 450 450 451 451 452 -The D DS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]452 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 453 453 454 454 455 455 == 2.5 Show Data in DataCake IoT Server == ... ... @@ -477,7 +477,7 @@ 477 477 478 478 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 479 479 480 -(% style="color:blue" %)**Step 4**(%%)**: Search the D DS20-LB and add DevEUI.**480 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.** 481 481 482 482 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 483 483 ... ... @@ -490,19 +490,19 @@ 490 490 == 2.6 Datalog Feature == 491 491 492 492 493 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, D DS20-LB will store the reading for future retrieving purposes.493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 494 494 495 495 496 496 === 2.6.1 Ways to get datalog via LoRaWAN === 497 497 498 498 499 -Set PNACKMD=1, D DS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.499 +Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 500 500 501 501 * ((( 502 -a) D DS20-LB will do an ACK check for data records sending to make sure every data arrive server.502 +a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 503 503 ))) 504 504 * ((( 505 -b) D DS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.505 +b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 506 506 ))) 507 507 508 508 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -513,7 +513,7 @@ 513 513 === 2.6.2 Unix TimeStamp === 514 514 515 515 516 -D DS20-LB uses Unix TimeStamp format based on516 +LDS12-LB uses Unix TimeStamp format based on 517 517 518 518 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 519 519 ... ... @@ -532,7 +532,7 @@ 532 532 533 533 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 534 534 535 -Once D DS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).535 +Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 536 536 537 537 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 538 538 ... ... @@ -560,7 +560,7 @@ 560 560 ))) 561 561 562 562 ((( 563 -Uplink Internal =5s,means D DS20-LB will send one packet every 5s. range 5~~255s.563 +Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 564 564 ))) 565 565 566 566 ... ... @@ -567,17 +567,17 @@ 567 567 == 2.7 Frequency Plans == 568 568 569 569 570 -The D DS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.570 +The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 571 571 572 572 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 573 573 574 574 575 -= 3. Configure D DS20-LB =575 += 3. Configure LDS12-LB = 576 576 577 577 == 3.1 Configure Methods == 578 578 579 579 580 -D DS20-LB supports below configure method:580 +LDS12-LB supports below configure method: 581 581 582 582 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 583 583 ... ... @@ -600,10 +600,10 @@ 600 600 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 601 601 602 602 603 -== 3.3 Commands special design for D DS20-LB ==603 +== 3.3 Commands special design for LDS12-LB == 604 604 605 605 606 -These commands only valid for D DS20-LB, as below:606 +These commands only valid for LDS12-LB, as below: 607 607 608 608 609 609 === 3.3.1 Set Transmit Interval Time === ... ... @@ -689,7 +689,7 @@ 689 689 = 4. Battery & Power Consumption = 690 690 691 691 692 -D DS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.692 +LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 693 693 694 694 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 695 695 ... ... @@ -698,7 +698,7 @@ 698 698 699 699 700 700 (% class="wikigeneratedid" %) 701 -User can change firmware D DS20-LB to:701 +User can change firmware LDS12-LB to: 702 702 703 703 * Change Frequency band/ region. 704 704 ... ... @@ -717,39 +717,38 @@ 717 717 718 718 = 6. FAQ = 719 719 720 -== 6.1 DS20-LB? ==720 +== 6.1 What is the frequency plan for LDS12-LB? == 721 721 722 722 723 -D DS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]723 +LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 724 724 725 725 726 -= =6.2Can IuseDDS20-LB in condensationenvironment?==726 += 7. Trouble Shooting = 727 727 728 +== 7.1 AT Command input doesn't work == 728 728 729 -DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 730 730 731 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 731 731 732 -= 7. Trouble Shooting = 733 733 734 -== 7. 1Why Ican'tjoinTTNV3inUS915/AU915bands?==734 +== 7.2 Significant error between the output distant value of LiDAR and actual distance == 735 735 736 736 737 -It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 737 +((( 738 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 739 +))) 738 738 741 +((( 742 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 743 +))) 739 739 740 -== 7.2 AT Command input doesn't work == 741 741 742 - 743 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 744 - 745 - 746 -== 7.3 Why i always see 0x0000 or 0 for the distance value? == 747 - 748 - 749 749 ((( 750 -LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 747 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 748 +))) 751 751 752 -If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 750 +((( 751 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 753 753 ))) 754 754 755 755 ... ... @@ -756,7 +756,7 @@ 756 756 = 8. Order Info = 757 757 758 758 759 -Part Number: (% style="color:blue" %)**D DS20-LB-XXX**758 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 760 760 761 761 (% style="color:red" %)**XXX**(%%): **The default frequency band** 762 762 ... ... @@ -782,7 +782,7 @@ 782 782 783 783 (% style="color:#037691" %)**Package Includes**: 784 784 785 -* D DS20-LB LoRaWANUltrasonicLiquid LevelSensor x 1784 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 786 786 787 787 (% style="color:#037691" %)**Dimension and weight**: 788 788